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ABSTRACT

A plethora of qubit devices is under consideration for possible development ranging from quantum teleporters
to quantum computers. The primary obstacle to the success of these efforts is the phenomenon of quantum
decoherence, the rapid vanishing of the off-diagonal components of the reduced density matrix representing the
computational degrees of freedom of the device. Following a review of the physics of quantum decoherence,
several instructive examples are exposited. Decoherence issues associated with the various possible approaches to
quantum computing are addressed. Also, possible generic methods are reviewed for surmounting the decoherence
obstacle.
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1 INTRODUCTION

Qubit devices currently under consideration for possible development include small-scale quantum information
processors such as quantum key receivers, quantum games, quantum teleporters, and also large-scale quantum
computers capable of efficiently factoring very large numbers and retrieving data from extremely large data bases
[1,2]. Quantum coherence must be maintained in qubit devices, and this is a primary obstacle to developing
quantum information processors, small and large. For an operational quantum computer to be built, a critical
requirement must be satisfied: the quantum register must be maintained in a coherent superposition of a very
large number of states, so that the computational outputs interfere to result in a very high probability that when
the computer output is read, it will yield the correct answer. Quantum coherence must be maintained throughout
the calculation. However, the couplings of the qubits to both their internal and external environments will
inevitably result in quantum decoherence. Even weak interactions with the environment may result in significant
departures from unitarity for the qubit subsystems, with associated dephasing and loss of coherence. This
quantum decoherence is the same quantum mechanism that led to a profound understanding of the macroscopic
vs. microscopic dichotomy, in which quantum superpositions are virtually unseen in the macroscopic world,
while they are the rule in the microscopic world of atoms and elementary particles [3,4]. Various long standing
quantum paradoxes, such as the Schrodinger cat paradox or the problem of Wigner’s friend, have also been largely
resolved in terms of quantum decoherence [3,5]. The interaction of a complex object with its internal and external
environments usually results in extremely rapid vanishing of the off-diagonal components of its reduced density
matrix (expressed in an appropriate basis), and to the corresponding phenomenon of quantum decoherence [3,6].
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(This includes practically all macroscopic objects except coherent light beams and superconducting states [3].)
For mesoscopic and microscopic systems such as qubit devices, the same decoherence phenomenon presents a
formidable obstacle to the maintenance of quantum coherence.

The present paper includes revised, expanded and updated versions of parts of Refs. [1,2,7,8]. We first review
in Section 2 the physics of quantum decoherence in generic two-state systems including environmental interactions.
We discuss decoherence in terms of the rapid decay of the off-diagonal components of the system’s reduced density
matrix, resulting from rapid orthogonalization of the entangled environmental states. In Section 3, we formulate
the persistence probability for a qubit device as the probability of measuring its computational degrees of freedom
in the unperturbed state, avoiding the decoherence arising from environmental interactions. A decoherence time
can be obtained from the persistence probability. In Section 4, we apply the persistence probability formalism to
generic qubit devices coupled to a thermal field environment. In Section 5, characteristics of a quantum register
are reviewed, and in Section 6, following a review of ion-trap quantum computers, an intricate calculation is
sketched of one possible mechanism of quantum decoherence in a trapped-ion quantum register. Sections 7-12
address various other approaches to quantum computer development, including ones based on optics, cavity
QED, NMR, silicon-based nuclear spin and quantum dots, Josephson junctions and SQUIDs, and neutral ators,
respectively. Section 13 addresses quantum error correction. Section 14 contains a summary.

2 QUANTUM DECOHERENCE

Consider a two-state quantum system in the absence of environmental interactions. The state vector |¢) for
such a two-state system, first considered to be closed, lies in a two-dimensional Hilbert space, and is given by

[¥) = @0 [0) + a1 [1), (1)

where |0) and |1) are kets representing the two states, here also serving as orthonormal basis vectors, and a( and
ay are complex numbers. The corresponding density operator p is given by

p=1¥) (¥l )
Substituting Eq. (1) in Eq.(2), one obtains for the density operator of this two-state system
p = lawol? 10) (0] + cvoar} 10) (1] + ey [1) (O] + Jar [* [1) (1] 3)
The corresponding density matrix is
ol = i) = [ o0l 050 ]. @
aﬁal |01|

The diagonal components are the populations, and the off-diagonal components are the coherences. The popu-
lations measure the probabilities that the system is in either state, and the coherences measure the amount of
quantum interference between the states. The expectation value of any observable represented by an operator A
for the two-state system is given by

(d)l A W)) = TI‘(pA) =Z PmnAnm, (5)

and it is clear that, in general, the coherences are as important as the populations in determining the expectation
values of observables.

Generally, a system is not closed. It does not exist in absolute isolation, and possible interactions with both
its external and internal environments must be taken into account. If the two states of interest are part of
an object containing other internal degrees of freedom, the latter constitutes the internal environment, and the

Proc. of SPIE Vol. 5115 309



external environment is external to the object. For complex systems, including most macroscopic and many
mesoscopic systems, the two states of interest might themselves represent two collective observables [3]. Consider
now, therefore, a two-state system with state vector [1(t)) at time ¢, including environmental interactions:

[$(1)) = @0 [0) @ [eo) + a1 [1) @ [er) (6)

in which now the two possible states of the system, |0) and |1}, through unitary evolution, have become entangled
with the correlated normalized environmental states |eg) and |e;), respectively. (Here ® denotes the tensor
product.) Thus, the density matrix representing the complete system with its environment, becomes

p(t) = |ool” 0) ® leo) (0] ® (eo| + aoet [0) ® |eo) (1] @ (e1] 1)
+ ajoy |1) ® ler) (0] ® (eo + ] |1) ® ler) (1] ® (ex]-

(Here and in the following, the term “density matrix” is used interchangeably with “density operator.”) If one is
interested only in what the two-state system is doing, and not the environment, one need only know the reduced
density matrix of the two-state system, with the environmental states traced out. For this purpose, choose as
environmental basis vectors the correlated vector |eg) and also Ied—) , orthogonal to |eg), namely,

(eolleg) =0, (egler) =cos 6, (eé‘lel) =sin 0, (egleo) =1, {ei]ler) = 1. (8)
The reduced density matrix p,(t) of our two-state system is then given by

ps(t) = Trep(t) = (eol p(t) leo) + (ea | p(t) |eq ), (9)

where Tr. denotes the trace over the environmental basis states. Substituting Eq. (7) in Eq. (9), and using Egs. (8),
one obtains
ps(t) = |ao)? [0) (0] + agax} cos 6 |0) (1] (10)
+aga; cos 0 |1) (0] + |ai]? (cos? 8 + sin? ) |1) (1] .

If one uses the trigonometric identity, cos?# + sin? 8 = 1, Eq. (10) becomes

ps(t) = lacol” 10) (0] + a0 cos ¢ 10) (1] (11)
+agay cos 0 |1) (0] + Jaa|* [1) (1]

Comparing Eq. (11) with Eq.(3), one can see that as a result of including environmental interactions, the co-
herences each contain an additional factor of cos @, the overlap between the correlated environmental states (see
Egs.(8)). The system and its environment evolve, interacting incessantly, and because of decoherence, the over-
lap between the environmental states |eg) and |e;) can become negligible; one then has orthogonalization of the
environmental basis states, namely,

cos § = (eg|e1) — 0, (12)
and Eq. (11) becomes
po(t) _— _Jool?10) (0] + fen[? 1) (1. (13)

This is the phenomenon of quantum decoherence, resulting in orthogonalization of the correlated states of the
environment and the vanishing of the off-diagonal components of the reduced density matrix [3,6]. For a complex
macroscopic or mesoscopic two-state system, the orthogonalization Eq.(12) generally occurs extremely rapidly.
For example, if Eq.(6) were to represent a macroscopic Schrodinger cat state in which |0) and |1} represent live
and dead cat states, respectively, the reduced density matrix Eq. (11) would decohere to the diagonal form Eq. (13)
so quickly that the coherences would never be observable. The reduced density matrix Eq. (13), as a result of the
decoherence, becomes effectively a statistical mixture, and the paradoxical features of the Schrodinger cat paradox
largely evaporate. “For all practical purposes,” there is simply a probability |on|2 that the cat is alive, and a
probability |o; |? that it is dead, with no mysterious interference between the live and dead cat states. Ontological
uncertainty is effectively reduced to the ordinary epistemic uncertainty which we experience in everyday life.

The dynamical evolution represented by Eq.(13) is, of course, nonunitary because, although the evolution
of the total density matrix representing a system and its environment evolves unitarily in accordance with the
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Schrodinger equation, in general, a reduced density matrix does not. Of course, the details of the evolution
(Eq.(13)) depend on the specific structure of the total Hamiltonian of the system together with its environment,
including all possible interactions. For a macroscopic system, and also many mesoscopic systems having many
degrees of freedom, the environment commonly has an enormous Hilbert space and a crowded energy spectrum.
Heuristically, in terms of perturbation theory, close energy levels result in high sensitivity to perturbations. Two
slightly different perturbations may lead to very different perturbed wave functions, which become orthogonal.
Environmental wave functions have many variables, and vanishing wave-function overlap in one variable is suffi-
cient for orthogonality. The Hilbert space of environmental states can become so enormous that two states are
very unlikely to not be orthogonal. The resulting loss of phase correlations in the high-dimensional environmental
configuration space results in orthogonalization of the environmental states that are correlated with the system
states, and produces quantum decoherence.

As an example of a macroscopic two-state system interacting with its environment, it is instructive to consider
an ordinary pendulum in a hypothetical superposition state, Eq.(6), for which the kets |0) and |1) represent, at
the same time, the pendulum of mass M and period T, with its lower end in two possible positions, separated
by a distance D in an ambient environment with negligible temperature. The two states represent two collective
observables, namely two positions of the center of mass of the pendulum. A dominant contribution to the envi-
ronmental interaction is, in this case, internal, and results from excitation of vibrational modes in the pendulum
instigated at the point of suspension. Other possible environmental contributions to decoherence include, for
example, ambient radiation, and collisions with any surrounding molecules. Correlations set up with the environ-
mental degrees of freedom destroy the coherence of the initial state, and result in rapid collapse into a localized
state. A reservoir-driven open-system model [9] can be adapted [3] to the pendulum decoherence problem, and
leads to the following simple formula for the decoherence time 74ec (lifetime of the coherences):

(Tdec/Tdamp) = hTp /(x M D?), (14)

where Tgamp is the classical pendulum damping time, and % is Planck’s constant divided by 27. For M =1
gram, D = 1 cm, and T, = 1 s, the decoherence time in Eq. (14) becomes ~10~28 in units of the damping time.
(Eq.(14) corrects the corresponding expression given on p. 291 of Ref. 3.) Thus, even if one academically considers
a two-state system consisting of such a superposition of spatially separated pendulum states, it would decohere,
for all practical purposes, instantaneously, and the superposition would thereby be effectively unobservable. The
pendulum would simply be with some probability in one or the other position, with no mysterious interference
and associated ontological uncertainty.

Since decoherence occurs so quickly in most macroscopic systems, it is typically far too difficult to observe;
however, experimental evidence for the effect was indicated in early experiments with superconducting quantum
interference devices (SQUIDS) [10], and more recently, it was definitely observed in a quantum optics experiment
[11]. In the latter experiment, a mesoscopic superposition of quantum states involving coherent electromagnetic
fields with classically distinct phases was produced, and its subsequent decoherence was observed.

Also for mesoscopic or even microscopic systems, decoherence often results in rapid vanishing of the off-
diagonal components of the reduced density matrix for the system. This same decoherence phenomenon presents a
formidable obstacle to the development of operational qubit devices such as quantum computers. The decoherence
results from interactions between the qubits and the noncomputational degrees of freedom in both the internal
and external environment. In the case of qubit devices based on atomic states, even spontaneous emission can be
understood in terms of decoherence arising from interactions between the atom and the environment of vacuum
fluctuations.

A number of methods are available for calculating decoherence in qubit devices, including the use of Lagrangian
field theory, path integrals, master equations, quantum Langevin equations, short-time perturbation expansions,

Monte-Carlo methods, semiclassical methods, exact density matrix solutions, and phenomenological methods.

In the Lagrangian field theory approach, a Lagrangian model is adopted to represent the qubit device in-
teracting with its external and internal environments, which can be represented by fields. The evolution of the
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environmental fields is obtained from the Heisenberg equations of motion. The corresponding total Hamiltonian
is used to calculate the time evolution of the reduced density matrix in which the environmental fields are traced
out. Any decaying time evolution of the coherences thereby follows. The Lagrangian field theory approach was
used in an early model calculation of decoherence in a generic computer memory [12].

In the path integral approach to calculating decoherence, the time evolution of the qubits, together with their
environment, is expressed as a Feynman path integral, from which one can construct the time evolution of the
density matrix in the form of a double path integral [13-21]. Tracing over the environmental coordinates, one
obtains the reduced density matrix for the qubits expressed as a double path integral with the Feynman-Vernon
influence functional in the integrand. The path integral approach expressed in terms of the influence functional
can, for example, be used to derive a master equation for an object coupled to a general environment [22]. In more
recent work, the path integral approach has been used to calculate the coherences and populations of a driven
damped two-state system [23]. The path integral approach has been used specifically to calculate decoherence in
an ion trap quantum computer (See Sections 3 and 6).

In the master equation approach [4,6,24-33], one uses the fundamental quantum mechanical equation for the
density matrix (expressed in terms of the total Hamiltonian describing the qubit interaction with its environment)
to obtain an equation for the reduced density matrix (expressed in terms of qubit variables) by tracing out the
environmental variables. One can often approximate the resulting integrodifferential equation by truncating an
iterative solution involving various orders in the interaction. A Markov approximation is also often made, which
reduces the integrodifferential equation to a local differential equation for the reduced density matrix representing
the qubit. The resulting equation is used to calculate the time evolution of the coherences for the qubit device.
The master equation approach has been used to calculate the evolution of coherences and populations for a system
coupled to a heat reservoir with a Debye density of states [28].

In the quantum Langevin equation approach, the Hamiltonian of the system interacting with its environment
(represented as a heat bath of oscillators) is used together with the Heisenberg equation of motion to obtain
differential equations that may be integrated to produce decoherence times [16,27,30-32].

In the short-time perturbative expansion approach, the Hamiltonian for the total system of the qubits, together
with their environment, is used to express the time evolution of the total density matrix in terms of its initial
state. One obtains the reduced density matrix describing the qubits by tracing over the environmental degrees
of freedom. The idempotency defect of the reduced density matrix can then be written as a short-time power
series expansion, from which decoherence times can be obtained. Successive terms of the perturbative expansion
generate times for decorrelation processes involving successive powers of the Hamiltonian. Second-order results
can be shown to exactly reproduce expressions for decoherence times obtained by other more involved and indirect
approaches [34].

In the Monte Carlo wave function method, the environment is treated stochastically and introduces random
fluctuations in the qubit wave function. The density matrix is expanded in terms of the wave function, and
a stochastic average is taken over the phase fluctuations within a given period of time. The time evolutions
of the coherences and the populations follow. The Monte Carlo wave-function approach has been shown to be
equivalent to the master-equation treatment [35]. In order to control numerical fluctuations, a large number of
wave functions must be propagated, and the simulations may be more or less efficient than the master equation
approach, depending on the dimensionality of the system Hilbert space and the type of observable calculated.
Stochastic methods are very useful in calculating quantum evolutions, and generally lead to a description in terms
of a stochastic wave-function evolution, which may either involve quantum jumps [35-39] or be continuous [40,41].
Several recent reviews thoroughly document quantum jump, Monte Carlo wave function, and quantum-trajectory
methods [30,31,42,43]. The quantum jump description can also be formulated in the framework of stochastic
differential equations using the Ito calculus [32,44].

In the semiclassical approach, the environment of the qubit device is treated approximately as a fluctuating
classical field interacting with the device. An ensemble average is taken over all possible field histories appearing
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in the density matrix. The effect of the averaging is to destroy the coherences. The semiclassical approach
cannot, however, correctly model the effects of thermal and vacuum fluctuations, which demand a full quantum
approach. An example of the use of the semiclassical approach is an estimate of qubit decoherence due to a
reservoir consisting of a classical magnetic field [45].

In the exact density matrix approach, one obtains explicit density matrix solutions by representing the density
matrix in terms of appropriate dynamical operators of the system without first taking the usual trace over the
environment. Finally, one traces over the environment to obtain the qubit coherences. This approach has been
used to examine the behavior of the unreduced density matrix of several simple open quantum systems, including
the detailed behavior of a background thermal bath [46].

Before further discussing the physics of quantum decoherence in qubit devices, it is well to recall the char-
acteristic requirements for a qubit in quantum information processing: (1) it is a two-state system, (2) it can
exist in a superposition of Boolean states, and (3) it can be entangled with the states of other qubits [47].
To implement a useful qubit in a quantum computer, it is not enough that its embodiment be scalable, but
it must robustly have all three characteristics. A qubit has the same general form as that discussed above in
Egs.(1) to (13), and is likewise subject to the phenomenon of quantum decoherence. A simple example of a
qubit is that of two polarization states |1) and |—) of a photon, in which the two kets correspond to vertical
and horizontal polarizations, respectively. A general superposition state of the qubit is |[¢) = «|1) + B|—),
corresponding to the Boolean state |1)) = «|0) + 8|1) . The entanglement of two such qubits can be represented
by [¥) = a12|1); |1)g + Br2 1)1 |=)e + 112 |—=); )5 + 612 |—); | =), where the coeflicients are some complex
numbers, and the state |)) cannot be factored into a single product of states of the two qubits. Entanglement
results from interactions represented by unitary transformation [1]. Some examples of possible qubit implementa-
tions include (1) ions in an electromagnetic trap (here a qubit may correspond to two hyperfine ground states of
a laser-cooled trapped ion, or to two quantized-harmonic-oscillator vibrational states of a trapped ion (phonons),
(2) cavity QED devices (here a qubit may correspond to two photon polarization states interacting with an atom
in a low-loss QED cavity), (3) Ramsey atomic interferometric devices (here a qubit corresponds to two atomic
states that can be coupled to another qubit consisting of two states of the quantized electromagnetic field in a su-
perconducting high-Q microcavity), (4) dual single-photon paths (here a qubit corresponds to two possible paths
of a single photon in an optical circuit), (5) devices based on nuclear or electron spins in an external magnetic
field (here a qubit may correspond to two spin states of a particle in an external magnetic field), (6) quantum
dot in a static magnetic or electric field (here a qubit corresponds to either two single-electron spin states, or two
states of an electric dipole in the presence of the field), (7) Josephson junction devices (here a qubit corresponds
to two charge states), and (8) superconducting quantum interference devices (SQUIDs) (here a qubit corresponds
to two magnetic flux states linking a superconducting loop).

A trapped-ion qubit device provided the first experimental demonstration of a fundamental quantum logic
gate, operating on prepared quantum states [48]. Mesoscopic “Schrodinger cat states” were also constructed by
the use of a trapped ion [49]. Also, some time ago, a cavity-QED qubit device was employed to experimentally
demonstrate the conditional dynamics required for a quantum phase gate involving two photonic qubits, both
traversing a microcavity [50]. An approach using Ramsey atomic interferometry was also used to experimentally
demonstrate conditional quantum dynamics at the single quantum level [51]. Schrodinger cat states have also
been produced using Josephson junctions and SQUIDs [52,53], and also using large gaseous ensembles of atoms
[54]. Quantum teleportation of qubit states has also been accomplished [55]. The entanglement of more than a
few qubits remains to be demonstrated in most approaches. Some estimates of typical single-qubit decoherence
times for various qubit implementations are as follows [56]: (1) trapped ions, 10™!s, (2) electron spins, 10~ 3s,
(3) nuclear spins, 10%s, and (4) electron quantum dots, 10~®s. One should emphasize that such estimates are
often very rough, and far too little reliable data are available on decoherence in mesoscopic and microscopic
systems appropriate for qubit device implementations. Some possible physical mechanisms contributing to quan-
tum decoherence in qubit devices include the following (without regard for redundancy or relative degree of
specificity): interactions with internal and external environments, interactions with noncomputational degrees
of freedom, spontaneous emission, interactions with electromagnetic fluctuations, laser-beam power fluctuations,
interactions with ambient background radiation, interactions with vibrational excitations (phonons), mechanical
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fluctuations, collisions with background atoms, interactions with contaminants, thermal fluctuations, and fluc-
tuations in quantum tuning. Possible methods for decoherence amelioration include qubit isolation from the
interacting background environment, quantum error correction and control methods, operating in decoherence-
free subspaces, increased computer speed, and entanglement purification (See Section 13). Interactions between
the computational degrees of freedom of a qubit device and environmental degrees of freedom result in damping
of the off-diagonal components of the reduced density matrix in the computational basis, and in the phenomenon
of decoherence. Qubit device designs that minimize or avoid such interactions may lead to increased decoherence
times. In the quantum error-correcting code approach to decoherence amelioration, a set of qubits is encoded by
being mapped unitarily into a subspace of a larger quantum state space, consisting of a larger set of qubits, so
that if any of the encoded qubits suffer decoherence, the resulting set of qubit states in the larger space can be
used to faithfully reconstruct the initial quantum state of the encoded qubits. By operating in decoherence-free
subspaces of the system Hilbert space, the coupling of the qubits to decohering interactions can be significantly
reduced. Also, since successful quantum computation requires that the compute time not be greater than the time
coherence can be effectively maintained for the computational degrees of freedom of the device, it follows that
increased computer speed may tolerate shorter decoherence times. In entanglement purification, entangled qubit
states with degraded fidelity are distilled to a smaller number of high fidelity states by means of local unitary
operations and measurements together with postselection. Although decoherence is widespread in macroscopic
and mesoscopic systems, it does not have a universal description [57] (without special assumptions, as in Ref. [58],
for example). It is therefore important that the phenomenon of quantum decoherence be much more extensively
and thoroughly investigated, both experimentally and theoretically, if useful qubit devices are to become a reality.
In the next section, the qubit persistence probability is formulated as the probability for the qubits in a qubit
device to remain in their unperturbed state, avoiding the decoherence arising from environmental interactions
(without quantum error correction).

3 QUBIT PERSISTENCE PROBABILITY

Consider a qubit device along with its environment, both internal and external. Denote the total Hamiltonian
of the qubit device along with its environment by

H=H,+H.+H', (15)

where H is the unperturbed qubit Hamiltonian expressed in terms of the computational degrees of freedom of the
qubit device, H, is the contribution of the environment to the total Hamiltonian, and H’ is the interaction term.
The environmental term H. includes both the internal environment of noncomputational degrees of freedom of
the qubit device, as well as those of the external environment. Denote the initial computational state of the
qubit device (at time ¢t = 0) by [in) . We refer to this in the following as the initial qubit state. We define the
qubit persistence probability P(t) at time ¢ as the probability of measuring, at time ¢, the final computational
state |fin) of the qubit device to be in its unperturbed state without the decoherence arising from environmental
interactions. Specifically, the unperturbed qubit state [fin) at time ¢ is given by

|fin) =e~ wHq t |in), (16)

written in terms of the unperturbed qubit evolution operator in the Schrédinger picture. Also, we denote by p,(t)
the reduced density matrix for the computational state of the qubit device at time ¢, with the environmental
states traced out. The qubit persistence probability P(¢) is then defined by

P(t) = (fin] py(t) Ifn) (17)

The evolution of the reduced density matrix py(t) can be obtained from the total Hamiltonian Eq. (15). Qubit
persistence probability is often referred to as fidelity.

We proceed to obtain a double path integral expression for the qubit persistence probability Eq. (17), in the
case of a qubit device interacting with its internal and external environment, represented by continuous fields.
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If @ denotes, collectively, the coordinates g, of pertinent environmental degrees of freedom, the evolved state
[1ge(Qy)) of the qubit device together with its environment at time ¢ can be expressed by the following path
integral:

Qs .
e (Q))) = / aQ /Q DQeFSMI y.(Q)), (18)

in which a standard integral is performed over all possible initial values @ of the coordinates, and the path integral
is over all possible paths Q(t). Also in Eq.(18), S[Q(t)] denotes the total action, @; denotes the values Q(¢) at
time ¢, and |94.(Q)) denotes the initial state of the qubit device together with its environment. In the absence of
initial quantum correlations between the computational degrees of freedom and the environment, the combined
initial state is given by the following tensor product:

%4e(Q)) = 1¥(Q)) ® [in) (19)

where |in) is the initial state of the qubit, and |¢.(Q)) is the initial state of the environment. Equation (18)
expresses the evolution of the environment explicitly, and that of the qubits implicitly. The evolved density
matrix p(Qy, Q%) of the qubit device and environment is given by

P(Q1,@5) = 1¥4(@) (¥ @) - (20)
If we substitute Eqgs. (18) and (19) in Eq. (20), we obtain the following double path integral:
P(Qf ) Q,f) = , (21
[dQ [§7 DQet SO [y(Q)) @ |in) [ dQ’ [ DQ' (in] ® (¥e(@)] =+, )
or equivalently,
P(Qs, Q) = 22)
[ [4QdQ’ [§7 [$ DQDQ'e#SIWN (4,(Q)) ((@)]) ® (jin) (in]) e~ #S[Q'®1,
The initial density matrix pin(Q, Q') of the environment, only, is clearly
Pin(Q, Q") = |9(Q)) {¥e(Q")].- (23)
Next substituting Eq.(23) in Eq. (22), one obtains
p(Qf)Qf) = (24)

[ 14QdQ! [§ [ DQDQeHSR0 (51,(Q, Q') ® fn) (in) =IO,

The bracketed tensor product in Eq. (24) is just the initial density matrix for the qubit together with its envi-
ronment. Equation (24) expresses the total density matrix of the qubit device including its environment as a
double path integral. We have been careful not to move the exponential on the far right to the left of the initial
density matrix, to allow for the case in which the interaction term in the action contains an operator, such as a
pseudospin matrix. This is the only way in which Eq. (24) differs from the standard form [13].

To obtain the reduced density matrix p,(t) of the qubits, which describes the computational state of the qubit
device, we must trace over the environmental states at time ¢; thus,

p(t) = / / 4QdQ)5(Qs — Q))p(@Qs, @), (25)

which expresses the trace for continuous degrees of freedom by means of the Dirac delta function. Next, substi-
tuting Eqgs. (24) and (25) in Eq. (17), we obtain for the qubit persistence probability P(¢) the following expression:

P(t)= [ [ [dQ;dQdQ’ [§ [§ DQDQ’ (fin|e+STOM) in) (26)
x (in] e~ #51Q" )] |fin) pin(Q, Q).
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The exponentials can be rewritten with
ASIQM = (#5.Q o=+ [y (Hat HQU A (27)

where S.[Q(t)] is the action of the environment, T denotes the time-ordered product, and H'[Q(t')] expresses the
dependence of the interaction on the environmental variables. For any Hermitian operator O, and its adjoint Of,
one has

(in| O [fin) = (fin] O1 |in)* . (28)
Substituting Eq. (27) in Eq. (26), and using Eq. (28), one obtains

P(t)= [ [ [dQsdQdQ’ [3 [ DQDQe#(SRMI-S[Q' ()] *
« (fin] Te™# ot HIQE DA 1 ((ﬁnl ot JIHAHQ @ |in>> (29)
Xpin(Qa Ql)

If we define the matrix element
A[Q()] = (fin| T e~ Jo HatH QDA 5y (30)

and the reduced density matrix propagator

' Q'f Qy i ’
1Qs,Q@.Q)= [ [7 DOk Ol a*(Q'(v) (31)
Q JQ
then we can rewrite Eq.(29) as

P(t) = / / / 4Q;dQdQ"T(Q;, Qr; @, @)pin(@, Q). (32)

We apply the qubit persistence probability formalism in Section 4 to a generic single-qubit device coupled to its
thermal environment, and in Section 6 to a trapped-ion quantum register coupled to its ion vibrational modes.

4 DECOHERENCE IN QUBIT DEVICES

An illuminating calculation has been performed of decoherence of a single qubit, using a fully quantized
approach, in which the environment is modeled as a continuum of thermal field modes [6,45,59]. Let us here
sketch the calculation. The qubit density matrix without environmental interactions is of the same form as
Eq.(3),

p(6) = poo() [0) (0] + ps(1)]0) (1 653)
+ p1o(8) 11} (0] + p12 () 1) (1],

written in the binary computational basis. The total density matrix for the qubit, together with the modes of
the thermal field environment to which it is coupled, is initially given by

p(0) = p(0) @ p* = Y pi;(0) [i) (il ® [ | R, (34)
k

1,j=0
where p¢ is the initial density matrix for the thermal field modes, and Ry is the thermal density matrix of field
mode k. The Hamiltonian H is taken to be
1

H=2

ho.wo + Y hbLbrwi + Y ho.(gebl + gibe). (35)
k k
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Here, the first term is the contribution of the free qubit, written in terms of pseudospin, represented by the
z-component Pauli spin matrix o,, and hwg is the energy separation between the two states of the qubit. The
second term in Eq. (35) is the contribution of the environmental field modes alone for mode frequency wy, and bL
and by are mode creation and annihilation operators. The third term in Eq. (35) is the interaction term describing
the interaction between the qubit and the thermal field modes, with coupling constants gr. The corresponding
evolution operator in the interaction picture is

_if' 20;(gkbfei”ki’+g,:bke'i”k")dt'
Uty=e °°% * , (36)

or equivalently,
Lo, ) (b}en(t)-brgr(t))
Ult)y=e * , (37)

where
Ek(t) = 2(gr/wi)(1 — e™+). (38)

It can be shown that the effect of the evolution operator Eq.(37) on a representative initial state is
U 1 1
27 720) + )0 0] "2 () |-36:0) + ) o 360} (39)

Here, |0)) is the vacuum state for a free field mode, and [:t%fk> are coherent states of amplitude :t%ﬁb Equa-
tion (39) shows how the qubit state becomes entangled with the environment. Also, it can be shown that the
overlap between the different environmental field states decreases with time, resulting in orthogonaliztion of the
environmental basis states, and qubit decoherence, as discussed generically in Section 2.

The total density matrix p(t) at time t is given by

p(t) = U)p(O)U ()™, (40)
expressed in terms of the evolution operator Eq. (37). The reduced density matrix p,4(t) of the qubit at time t is
pe(t) = Trr(U()p(0)U (1)), (41)

where the trace is taken over the thermal environmental field modes. The coherences and the populations were
calculated for a one-dimensional field in the low-temperature limit. The populations are unaffected by decoherence
for the case at hand, namely,

{01 pg(t)10) = poo(0), (1] pg(t) 11} = p11(0). (42)
The coherences become
(L pg(t) 10) = eT®p10(0), (01, (t) 1) = ™" Dpo1(0), (43)
where the decoherence function T (t) is defined by [6]

I'(t)= %1:1(1 +w?t?) +1In [(ih) sinh (ﬁh)] (44)

Here, B = 1/kT, where T is the temperature. Also, w, is a cutoff frequency corresponding to some characteristic
length scale of the system, below which the qubit-environment coupling is negligible (such as the Debye frequency
for a phonon field).

Let us proceed by calculating the qubit persistence probability for the following initial state:
lin) = 2772 (|14) +|-)), (45)

in which

) =), [-)=10), o.|%) ==£I[F). (46)
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In the interaction picture, the unperturbed state of the qubit at time ¢ remains identical to |in); hence

[fin) = 2717 (14) + |-)).- (47)
The qubit persistence probability Eq. (17) is then given by
P(t) = (fin| p,(2) [fin) . (48)
Using Egs. (41) to (43), and (45) to (48), one obtains
L Lra
P(t) = 5 + 5¢ . (49)

Substituting Eq. (44) in Eq. (49), and performing a Taylor series expansion in the time, we find that

Pt)=1- (;)2 +o (50)

where

T= (51)
The short-time scale, 7, for the decoherence is seen to be of the order of the inverse cutoff frequency (such as the
Debye period for a phonon field) corresponding to a characteristic length scale below which the qubit-environment
coupling is negligible. The model has also been extended to analyze quantum decoherence in a quantum register
(see next Section) of N qubits [6,45,59]. For independent interaction of the qubits with the environment, the
decoherence time scales as 1/N, while for collective interaction it scales as 1/N2.

5 QUANTUM REGISTER

One of the main ingredients of any sizable quantum computer would be the quantum register. In Section 6, a
review of a detailed calculation of a particular type of quantum decoherence in a quantum register will serve as
an example of the intricacies and difficulties which can be involved in the calculation of quantum decoherence.
We first review the characteristics of a quantum register. A quantum register may be thought of as a row of N
qubits. A binary number,

N-1
n= Z nk‘Zk, ny=0or1 (52)
k=0

can be stored in the quantum register, and is represented by a product state of the N qubits, namely,

[n) = |nn=1) [nn=2) - - - 1) [no) . (53)

Here, tensor products are implicit, and the order of the kets corresponds to the order of the qubits in the register.
Each ket in the product corresponds to a single qubit. A general state |} of the free quantum register is given
by the N-qubit entangled state,

2N -1

W= Y anln), (54

n=0
where the «, are complex numbers, and the sum is over all 2V possible product Boolean states, Eq. (53), thereby
forming a 2N dimensional Hilbert space. For example, a three-bit classical register can store only one of eight
different numbers, {000,001,010,011,100,101,110,111}, using a binary representation of numbers between 0 and 7.
But a quantum register consisting of three qubits could store up to eight numbers at the same time in a quantum
superposition. The state of the three-qubit quantum register is in general given by

|9} = co00 |0) |0) |0) + exoo1 [0) |0) |1) + 010 [0) 1) |0) + evor1 |0) |1) [1) (55)
+ 100 [1)10) 10) + @101 [1) 0} [1) + @110 [1) [1) [0) + @111 [1) 1) [1) .

318 Proc. of SPIE Vol. 5115



This corresponds to a coherent superposition of the numbers from 0 to 7. For the N-qubit quantum register,
although measuring the register’s contents will yield only one number, a quantum computation could effectively
manipulate all 2V numbers at once. For example, if each qubit consists of two states of an atom, tuned laser pulses
could perform operations on the electronic states so that an initial superposition of 2V numbers could evolve into
a different superposition. This evolution results in massive parallelism, since each number in the superposition is
affected.

To prepare a specific number in a quantum register, N elementary operations must be performed. Each of
the N qubits must be put in one of two states. N elementary operations, which can be represented by unitary
transformations on each qubit, can prepare the register in a coherent superposition of 2V numbers, to be stored
in the register. This process can be seen as follows. One can represent the Boolean states |0) and |1) by the

o 0=(g). w=}): (56)

If, for example, the first qubit of a three-qubit register is in the state |0), then applying a Hadamard operator H,
causes the state of the qubit to become

H [0) :2-1/2( P ) ( . ) =2-1/2( i ) = 271/2(|0) + 1)), (57)

which is an equally weighted superposition of Boolean states |0) and |1) . The Hadamard operator applied to each
qubit of a three-qubit quantum register, each initially in state |0), yields the state,

19) = T (10) = #10) H10) £ 10) = 272 (10) + 1)) (0) + 1) 10) + 1)
= 2972 (J0) + [1)) (10} 0) +[0) 11) + [1)0) + [1) 1)) (58)
= 2972 (10){0) [0) + [0)[0) [1) + [0) 1) [0} + [0) 1) 1)
1110 [0) + [1)10) 1) + 1) 11) o) + [1)11) 1)),

in which the order of the kets is preserved and corresponds to the order of the qubits in the register. Next, using
a notation for states representing numbers to the base 10, that is,

|0) =010} |0}, |1) )11)10)

D =10)[0)[1), 2= 10110}, [3)=10)[1) 11, (59)
14) = [1)10) [0}, 15) = [1)[0)[1), [6) = [1)[1)]0), [7) = [1)[1) [1),
one can rewrite Eq. (58) as
[¥) = 273/2(|0) + |1) + [2) + [3) + [4) + |5) + [6) + 7)) = 2-3/2 z—: [n) . (60)

Thus, more generally, if an N-qubit register is initially in the state |0) |0} |0) ... |0), one can apply the Hadamard
operator H, to each qubit, and the resulting state of the register is an equally weighted superposition of all 2V
numbers, namely,

N 2N -1
) = [T (H10)) = H|0) H |0} ... H[0) = 27N/ D" |n). (61)
i=1 n=0

The N elementary operations generate a state containing all 2V possible numerical values of the register. This
provides a method for generating an important intermediate state in Shor’s quantum factoring algorithm. If the
quantum register is prepared in such a coherent superposition of numbers, and all subsequent computational
transformations are unitary (preserving the superposition of states), then in each step, the computation is per-
formed on each of the numbers in the superposition simultaneously. In Section 6, following an introduction to the
trapped-ion approach to quantum computer development, the physics is quantitatively addressed of one possible
mechanism of quantum decoherence in a particular implementation of a quantum register, namely, a trapped-ion
quantum register.
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6 ION-TRAP QUANTUM COMPUTER

In an early version [60] of an ion-trap quantum computer [56,59-64], a one-dimensional lattice of identical
ions is stored and laser cooled in a linear Paul trap (radio frequency quadrupole trap). The linear array of ions
acts as a quantum register (see previous section). The radio-frequency trap potential strongly confines the ions
radially about the trap axis, and an electrostatic potential causes the 1ons to oscillate along the trap axis in an
effective harmonic potential. Laser cooling results in localization of the ions along the trap axis, with spacing
determined by Coulomb repulsion and the confining axial potential. The lowest frequency mode of collective
oscillation of the ions is the axial center-of-mass mode, in which all the ions oscillate together with the same
phase. Each of the trapped ions acts as a qubit, in which the two pertinent states are the electronic ground state
and a long-lived excited state. By means of coherent interaction of a precisely controlled laser pulse with any
one of the ions in a standing wave configuration, one can manipulate the ion’s electronic state and the quantum
state of the collective center of mass mode of the oscillator. In principle, the center of mass mode can then be
used as a bus, quantum dynamically connecting the qubits, to implement the necessary quantum logic gates.
The general state of the line of ions comprising the quantum register is an entangled linear superposition of their
states. A completed computation can be read out by a quantum jump measurement technique. Experimental
demonstration of the ion-trap approach began with state preparation, quantum gates, and measurement for a
single trapped ion [48]. Later, coherent Rabi flopping and a controlled-not gate between spin and motional qubits
were demonstrated [65]. Also, selected single-spin qubit operations have been demonstrated on a chain of ions
[66]. A two-spin qubit gate and a controlled-NOT gate were demonstrated [67,68]. Also a four-spin maximally
entangled state has been produced [67]. Two-logical-qubit operations have not yet been performed. A number of
experimental and theoretical issues regarding the ion-trap approach to quantum computation have been explored
[69,61-63,68-81]. An experimental difficulty in implementing this approach is cooling the ions to the ground
state in the trap. An important source of decoherence is apparently the heating due to coupling between the ions
and noise voltages in the trap electrodes [70]. The speed of an ion trap quantum computer would apparently
be limited by the frequencies of vibrational modes in the trap. It has been contemplated that 100 quantum
gate operations could be applied to a few ions [69]. It is doubtful that sufficient storage capacity and coherence
will ever be achieved to enable factoring of hundred-digit numbers by the trapped-ion approach; however, it is
contemplated that scalability to large numbers of qubits might be achieved by interconnecting ion-trap arrays
[82,83]. Also, it is possible that smaller traps can be constructed using nanofabrication technology.

Some time ago, an intricate path integral calculation was performed of quantum decoherence in a trapped-ion
quantum register, arising from vibrational coupling of the ions [84]. The calculation, which is sketched in the
following, illustrates the complicated nature of quantum decoherence for just one of many possible decoherence
mechanisms. A trapped-ion quantum register consists of a linear array of N identical ions confined in a linear
radio-frequency quadrupole trap. To each ion corresponds one ket in the tensor product, Eq.(53). Each ion
contains one qubit consisting of a ground state |g), and an excited state |e); of the ion. It is convenient to employ
the following notation:

) =le)is =)= le)yy  oialE); = x4+, (62)

where 0;, is the z component of pseudospin for the ith ion. The following initial state for the quantum register
was addressed:

N
lin) = H2"1/2 (Y +1-))- (63)

This state has the same structure as Eq. (61). Here, each ion is in a superposition of its ground and excited states.
Such an N-fold tensor product state is typical in quantum computation, and can, in principle, be generated by
the use of appropriate distributions of laser pulses to excite or de-excite the ionic qubits. The coupling between
ion vibrations in the confining electromagnetic trap potential and the qubit states of the ions is one of the many
possible processes contributing to decoherence in such a qubit device, and is the decoherence process addressed
here. The charged ion vibrations create fluctuating electric fields that drive transitions between the atomic states
representing the qubits, and alter the time evolution of the computational degrees of freedom. Even at zero
temperature, zero-point ionic motion can cause decoherence. The total Hamiltonian H for the ion-trap quantum
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register, together with its environment of ionic vibrations, is given by
H:Hi+Hnm+HI) (64)

where H; is the free qubit Hamiltonian having eigenstates that are N-fold tensor products of |g); and |e); , Hnm
is the Hamiltonian of the normal modes of vibration of the ions, and H' is the interaction term. Specifically, one
has

1
H; = 3 ; hwoo;,, (65)

2
_E : Py 1 5,4
Hpym = : (% + §mwuq“> y (66)

and

H'= Z (CicCipz + TiyCiny) Q- (67)

ip

In Eq.(65), hwo is the energy difference between the states |g), and |e);, and a pseudospin representation of
the two-level atom is employed, in which oy, is the z-component Pauli spin matrix corresponding to the ith
ion. In Eq. (66), m is the mass of each ion, and g, and p, are the ion-vibrational normal mode coordinates and
momenta, respectively, for mode p with frequency w,. In Eq.{67), 0;, and i, are the z and y component Pauli
spin matrices, respectively, corresponding to the ith ion, and ¢;,, and c;,, are the transverse coupling constants.
An approximation can be made based on the following inequalities, with ¢;, = (¢?,, + ¢2,,)!/*:

wo > wy, Rt <Zciu‘1u> <L wy, h=? Z(Ciuqu>2 Jwo K wy, (68)
T 7

which are likely to be satisfied for vibrational frequencies small relative to atomic transition frequencies, sufficiently
small couplings, and for vibrational states cooled to near zero temperature. The particular case was addressed of
Bat ions with qubit states |g); and |e); lying in 65251/, and 5d2Ds;, multiplets, respectively, with AM = +£1.
The decay 2D5/2 —2 S1/2 is an E2 process with spontaneous emission time 7, ~ 35 s, and with wo/27 = 1.7 x
10'4Hz. One obtains the following expression for the magnitude of the transverse coupling constants:

_ , ) 4 A

i = cira = =0 3 (Ff = FY) (s = )" (el @l I9)] (69)
i#i

in which the mode index p = (7, @) corresponds to the a-component of mode r, where r ranges over the number

of vibrational modes, and a = z,y, since [AM| = 1. Also in Eq.(69), ¢ is the ion charge, F} are normal mode

eigenvectors, z; is the equilibrium position of the ith ion, and Q¢ , is the quadrupole moment tensor for the ith

ion. The transition matrix element (e| Q¢ , |g), expressed in terms of the spontaneous emission time, is given by

~ 2 18hc\ 1

€l lof = (255) - (70)

d]

Tsp

where ¢ is the vacuum velocity of light.

The starting point for the decoherence calculation [84] is Eq. (32) above, in which the initial density matrix
pin(Q, Q') of the environment, consisting of the modes of vibration of the ions, is taken to be thermal with
temperature 7', and given by

pin(Q) Ql) = POe_'@H"m, (71)
where pg is a constant, and 8 = 1/kT. Using Eq. (71) together with a perturbative adiabatic approximation based
on the inequalities Eq. (68), the double path integral in Egs.(31) and (32) can be reduced to obtain the following
expression for the qubit persistence probability for the ion-trap quantum register:

P =2 S ] (sinh(ﬁhwu /2) [sinh ((Bhw, — iaﬂt)/z)]-‘) , (72)

{s,8'} u
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where N is the number of ions in the register, 6, is defined by
6/‘ = (mhwow,‘)‘l Z(Si - S;)c?u, (73)

and
{s,8'} = {51,52,...5N; 51,83, .5}, s =%£1, sf =%l (74)

Expanding Eq. (72) as a Taylor series in time, one obtains

Pt)=1- (%)2 +o (75)

in which the decoherence time 74 is given by

Td =

20 {3 [ (55, mhn ) e coth ) + 55, (i s )|}

In the zero temperature limit, 8 — oo, Eq.(72) becomes

P(t) :H cos? (lz (2mhwow,,) " c?u] t) , (77)

I

and the decoherence time becomes
-1/2

2
T4 = 2mhwg Z (Z w;lcfﬂ) . (78)
H

i

By using a continuous approximation for the distribution of ions along the linear array, and replacing all the mode
frequencies by the frequency w;n of the zigzag transverse mode, which is the smallest, one obtains the following
lower bound on the decoherence time:

(ta/7sp) > 2.8 [‘ln(0.81\7)]8/3 N_35/6q10/3m‘5/36‘5wgwt1vwz'16/3, (79)

where 12
win & |(w?— (9/16)C(3)N? (In (0.8N)) " w?| (80)
in which w, and w; are the longitudinal and transverse center of mass vibration frequencies, respectively, and the
value of the Riemann zeta function is {(3) = 1.2. In Eqgs.(79) and (80), note the strong inverse dependence of the
decoherence time of the quantum register on the number N of qubits in the register. One can obtain the critical
transverse center of mass vibration frequency w;.,, the threshold of the zigzag instability, by setting w:xy to zero
in Eq. (80):
wier = (3/4) (€ (3)2 (In (0.8N)) /2 Nuw,. (81)

Setting win = wier/2 in Eq.(79), one obtains (74/7sp) in the 10* to 10® range for (wo/27) = 1.7 x 10'* Hg,
(wz/27) in the 10* to 10% Hz range, and N = 1000. Although this result might be considered encouraging for
ion-trap qubit devices, the result of other work is pessimistic [59,78-81].

Some other possible sources of quantum decoherence in an ion-trap quantum computer include ion heating
due to electrode voltage noise, spontaneous emission, unwanted atomic transitions, noise in the center-of-mass
mode, laser instabilities, electromagnetic field fluctuations, laser intensity fluctuations, collisions with background
gas in the vacuum chamber, phonon scattering, thermal radiation, and ion cross-talk. Including only the effect
of spontaneous emission without quantum error correction, it has been argued that the largest number one can
factorize is really small [69]. It is noteworthy that quantum decoherence of a generic quantum register of arbitrary
length, coupled to an environment of arbitrary coherence length, shows a strong dependence on the input state
[85]. The effects of decoherence on a quantum register may be lessened by encoding quantum information in
decoherence-free subspaces in which the states are invariant under environmental coupling [62,86].
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7 OPTICAL QUANTUM COMPUTERS

Optical quantum computers are of three general types, based on (1) ordinary linear optics, (2) nonlinear
optics, and (3) probabilistic linear optics with conditional logic. In a quantum computer based on ordinary linear
optics, a basic qubit consists of two path states of a single photon [1,87]. A photon leaving an optical element,
such as a beam splitter with two exit ports, has a propensity to exit along either path, so the photon becomes a
two path-state system. Qubits can also be based on the photon-polarization state. The linear optical elements
composing the device include beam splitters, mirrors, polarizers, wave plates, etc. The initial state of the device
need only consist of a single photon entering the device at a beam splitter. All the necessary quantum gates
can be implemented. Even two-qubit gates such as the controlled-NOT gate can be implemented. By cascading
the number of beam splitters, locating one at each alternative path in a network of optical elements, the device
becomes a multiple-qubit system. However, because of the resulting exponential proliferation of optical elements
needed to form a large number of path qubits, such a linear-optical quantum computer is limited to a relatively
small number of qubits. The device is therefore limited to implementing small-scale quantum networks of optical
elements for performing small quantum algorithms, such as those involved in simple quantum error correction
and quantum teleportation.

The second type of optical quantum computer is a multi-photon device employing nonlinear optical elements
[66]. Nonlinear optical elements are needed so that the state of one photonic qubit can control the state of another
at certain nodes in the network. The exponential cascading required by large linear-optical quantum computers
is circumvented. The problem with the use of traditional nonlinear optical elements for implementing conditional
dynamics, in which the state of one photon conditionally modulates the state of another, is the prohibitively
huge nonlinear susceptibility required to produce the necessary phase shifts at the two-photon level of intensity.
Practical nonlinear photon gates operating at the two-photon level of intensity are not presently available; and
various innovative approaches have not been successful. It should however be noted that recent work on controlled
slow light may facilitate innovative nonlinear optical approaches [88-90].

Another type of optical quantum computer would use single photon sources, passive linear optics, fast efficient
photodetectors, and fast electrooptic feed forward [91,92]. Two qubit gates would not require huge nonlinearities,
but would instead exploit conditional logic based on selected photodetector responses. In this approach, the
success of gate operations is intrinsically probabilistic. Nondeterministic quantum logic operations have been
demonstrated [93]. Using linear optics together with spontaneous parametric down conversion and post selection,
three-photon Greenberger-Horne-Zeilinger entanglement has been observed [94], and it may be that this can
also be accomplished with single photon sources. Practical fast and reliable on-demand single photon sources
and efficient discriminating single-photon detectors are not yet available. Although photonic qubits offer greater
immunity to decoherence, this is offset by the intrinsic probabilistic nature of this approach. Also, the fidelity of
all optical components and detectors must be significantly improved. Although decoherence is not an obstacle to
the development of a reasonably small special-purpose optical quantum information processor, it would become
an issue in any attempt to scale up the device to include large numbers of optical elements. Some possible sources
of decoherence include photon losses, imperfect optical elements, ambient light, imperfect interferometric paths,
and imperfect mode matching.

8 CAVITY QED QUANTUM COMPUTER

Another early approach to the development of a quantum computer was offered by cavity quantum electrody-
namics (QED) [56,59,62,63,95-99]. In one cavity QED approach, a number of neutral atoms are trapped inside
a high-finesse optical cavity [100]. Electronic states of the atom act as qubits to store information. The atoms
in the cavity interact with a quantized mode of the cavity. The separations between the atoms are much greater
than the wavelength of the cavity mode, and the atoms can interact individually with laser pulses. This permits
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sequences of operations between two qubits and the implementation, in principle, of an entire quantum network.
The qubits may consist of ground state levels of the trapped atoms. Quantum gates can be implemented by the
atoms being coupled to individual laser pulses and entangled by exchange of a cavity photon. Pulsed lasers can be
used to drive transitions in one atom conditionally on the internal states of another atom. Also, the polarization
states of a photon can serve as a qubit. An atom trapped in the cavity can act as an effective nonlinear medium
to mediate interactions between two photons, and thereby implement a two-photon quantum gate, in which the
polarization state of one photon alters the phase of the other photon [50]. Letting |}, and |r); denote left and right
circular polarization states of photon i (i = 1, 2), one has, effectively, |}, [}, = |I}; [I),, [}, |7}y => €'%2 |1), |7),,
7Y, [0}y = €9 |r), |}y, and |7}, |r), = €' (#1+82+8) |1} |7}, where ¢; and ¢ are differential phases between
the two polarization states, and A is the conditional phase shift. These transformations, are accomplished first
by one photon being stored in the cavity, in which the right circular polarization state couples strongly to the
atom, but the left circular polarization state does not. Next, another photon traverses the cavity, also interacting
preferentially in one polarization state with the atom, and acquiring the conditional phase shift only if the photons
are in the right circular polarization state. Thus, the phase shift is conditional on the polarization state of both
photons; the result is a two-qubit quantum logic gate. The gate exploits the extremely large optical nonlinearities
that are achievable in cavity QED. The cavity may operate in a moderate-coupling parameter regime in which
& > (g?/K) > 7, or even the strong coupling regime in which g > (k,7), where & is the cavity-field damping rate,
g 1s the dipole coupling rate of the atom to the cavity, and v is the transverse atomic decay rate to noncavity
modes. In the moderate coupling regime, the coherent coupling of the atom to the cavity mode (at rate g2/x)
dominates incoherent emission into free space (at rate v). This enables strong coupling of a single atom to the
cavity mode, allowing efficient transfer of electromagnetic fields from input to output channels (at rate ).

Conditional dynamics at the single quantum level has also been achieved with single atoms interacting with
very weak microwave fields in superconducting cavities [51]. Atomic wave function phase shifts were produced
by microwave fields with, on average, much less than one photon in the cavity. In related work, a quantum
memory was implemented in which the quantum information carried by a two-level atom was transferred to
a cavity, and subsequently to another atom [101]. Within the same framework, a methodology was developed
for the construction of arbitrary quantum computational networks with all the necessary quantum gates to
perform all quantum logic operations {102,103]. In cavity QED, sources of decoherence include spontaneous
emission from excited states of atoms, cavity decay during gate operation, laser fluctuations, and ambient light.
Maintaining coherence between multiple cavities is problematic. Also, the trapping and localization of atoms inside
cavities present formidable difficulties. Possible scaling up of the cavity-QED approaches to more than several
qubits remains to be accomplished and poses serious problems, which may limit the practical utility of cavity-
QED quantum computers to special-purpose small-scale quantum information processing (for use in quantum
communication, for example). However, it is possible that the cavity-QED paradigm can be implemented using
much smaller nanofabricated circuits.

Cavity QED is also being implemented in the development of possible quantum computer communication
networks. In the cavity-QED approach to quantum information processing, both the states of atoms confined in
cavities and the states of photons interacting with the atoms may serve as qubits to store and transfer quantum
information. Although the difficulties in the successful trapping and localization of atoms inside high-finesse
optical cavities are considerable (perhaps making the development of large-scale universal quantum computers
based on the cavity-QED concept an unattainable goal), the development of small-scale special-purpose quantum
information processors involving limited numbers of trapped atoms will likely be possible. For example, cavity-
QED can provide a practical approach to the development of controlled single-photon sources, the synthesis of
entangled states, and quantum teleportation between cavities. Both photonic and atomic qubits may be exploited
with the cavity-QED paradigm, in the form of quantum information networks that enable the implementation
of quantum communication protocols and distributed quantum computation [59,62,99,104-108]. Multiple atom-
cavity systems located at distant network nodes may be interconnected with optical fibers, or perhaps even use free-
space transmission. Analysis has been performed of basic network operations, including local quantum information
processing, quantum state transmission between network nodes, and quantum entanglement distribution [104-
110]. Ideal transmission may be permitted after a finite number of trials, without disturbing the quantum
information. Possible sources of decoherence include absorption of photons in the optical fibers and cavity
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mirrors, cavity and laser design errors, ambient light, and scattering.

9 NMR QUANTUM COMPUTER

Proof of principle of quantum computation was first accomplished by still another approach, which makes
innovative use of established nuclear magnetic resonance (NMR) technology. NMR is used as the basis for quantum
computation when certain liquids are used along with available NMR instrumentation [56,59,62-64,99,111-114].
The qubits are the spins of atomic nuclei in the molecules constituting the liquid. These qubits are extremely
well isolated from their environment and have long decoherence times. The nuclear spin orientations in a single
molecule form a quantum data register. The liquid contains about 1023 molecules at room temperature and
undergoes strong random thermal fluctuations. The liquid is located in a large magnetic field, and each spin can
be oriented either in the direction of the magnetic field (|1} = |0}) or opposite (||) = |1}). An NMR quantum
computer operating on N qubits uses molecules having N atoms with distinguishable spins in the frequency
domain. The input to the computer is an ensemble of nuclear spins initially in thermal equilibrium. Each spin
can be manipulated with resonant rf pulses, and the coupling between neighboring nuclear spins can be exploited
to produce quantum logic gates. The spins have scalar coupling, and a driving pulse in resonance can tip a spin
conditional on the state of another spin, thus providing a quantum bus channel. A sequence of rf pulses and
delays produces a series of quantum logic gates connecting the initial state to a desired final state. By suitable
timing of each pulse, a desired unitary transformation can be resonantly performed on a single spin of a molecule
even though all the spins in the molecule are exposed, since they all have slightly different resonant frequencies.
The decoherence times of the spins are long enough that the qubits can be stored for a sufficiently long time.
The average magnetic moment of all the nuclei together is big enough to produce a detectable magnetic field
for measurement purposes. The liquid consists effectively of a statistical ensemble of single-molecule quantum
computers, which can be described by a density matrix. The method exploits the structure present in thermal
equilibrium to produce a perturbation in the system’s large density matrix that is effectively equivalent to a pure
state of much smaller dimension, a pseudo-pure state. The system of molecules, each having N nuclear spins, can
be described by a density matrix p = 2=V 4 pa [111-113] in which the first term describes an equilibrium part
that is proportional to the identity I, and the second term pa is a traceless matrix representing the deviation from
equilibrium. For an appropriate pulsed field sequence, the deviation transforms as a density matrix, the deviation
density matrix, and represents the statistical ensemble of single-molecule quantum computers in the form of a bulk
effective quantum computer. An effective pure state can be distilled out of pa by means of a data compression
pulse sequence. An appropriate computational procedure yields a deterministic result in which measuring the
ensemble yields a nonvanishing average. Readout is performed by measurement of the magnetization of the bulk
sample. This is bulk quantum computation employing large ensembles of quantum systems instead of single
systems. Such a bulk quantum computer acts as an ensemble of many small quantum computers carrying out
computations independently in parallel. The initial state of each is random, and only ensemble averages of each
computer register can be measured. The ensemble can effectively behave like a pure state, since even if, for
example, only a small fraction of the systems are in their ground states, the ones that are not can be arranged
so that their signals cancel each other, and only the fraction in the ground state produces a nonvanishing signal,
making the ensemble appear to be pure. Generally, if a chosen fraction of the states can be labeled, and the rest
caused to average away, then an effective pure state can be produced.

Some experimental accomplishments to date in the NMR approach include: implementation of Grover’s fast
quantum search algorithm for a system with only four states, demonstrations of two- to seven-qubit quantum
computation, proof-of-principle quantum error correction, implementation of a quantum algorithm determining
whether an unknown function is constant or has value 0 for half its arguments and 1 for the rest, implementation
of a quantum algorithm for estimating the number of matching items in a search operation, implementation of
Shor’s algorithm in factoring a two-digit number, and quantum teleportation [63].

The NMR quantum computers have poor scaling with the number of qubits. The measured signal scales
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as 2= N. This feature will likely limit liquid NMR quantum computers to applications requiring only about 10
qubits. Attempts are underway to go beyond 10 qubits by developing solid-state NMR devices [63], however this
approach would likely be limited to less than 30 qubits.

10 SOLID STATE QUANTUM COMPUTERS

Since it is unlikely that NMR. quantum computers can be scaled up to produce large-scale quantum computa-
tions involving very large numbers of qubits, a popular hybrid concept was proposed that would use semiconductor
physics to deterministically manipulate nuclear spins [115,63]. The silicon-based nuclear spin quantum computer
would consist of an equally spaced linear or planar array of dopant phosphorus nuclear spins implanted in a silicon
semiconductor crystal, separated by an insulator layer from overlaying voltage-controlled metal gate electrodes.
The gate electrodes would implement quantum logic operations by affecting the shape of the electron wave function
surrounding each phosphorus nucleus. The qubits would be the nuclear spins of the phosphorus nuclei embedded
periodically in the silicon crystal, each located directly beneath a gate referred to as an ‘A gate’. A phosphorus
atom in a silicon host is an electron donor, and at room temperature one of its outer electrons can move freely in
the crystal; however, at the very low temperature of operation of the device, the electron is weakly bound by the
phosphorus ion, and the electron spin can interact with the nuclear spin. Thus, the weakly bound electron spin
could affect the state of a qubit, since electron and nuclear spins are coupled by the hyperfine interaction. Also,
the electrons could mediate nuclear spin interactions and facilitate the measurement of nuclear spins. A voltage
applied to an A gate could cause the wave function of the electron bound to the phosphorus nucleus beneath it
to become altered, thereby changing its overlap with the nucleus. This electron-nucleus interaction would affect
the relative energies of the nuclear qubit, and therefore also the resonant rf frequency needed to cause a nuclear
spin flip. This would make it possible for a resonant rf pulse to selectively change the state of only that nucleus.
Between any two neighboring A gates would be a ‘J gate’, for affecting the overlap between two electron orbitals
bound to neighboring phosphorus nuclei in the lattice. This J gate would result in an indirect coupling between
the two neighboring phosphorus qubits, making it possible to implement the quantum gates necessary for quan-
tum computation. Since it is presently prohibitively difficult to directly measure the spin state of an individual
nucleus, an indirect approach might be implemented, involving a chain of interactions among the nuclear spin,
its bound electron and a neighboring electron, the external magnetic field, and the J gate overlaying the two
electron orbitals; these interactions could affect the capacity between neighboring A gate electrodes, which could
be measured. Normally, all electron spins would be pointed in the direction of the external magnetic field, but if
the overlap between two neighboring electron orbitals were sufficiently increased by an applied J-gate voltage, it
might become energetically favorable for the pair of electrons to change their state so that their spins are opposite.
Whether this happens would depend on the direction of whichever phosphorus spin is coupled most strongly to its
bound electron, and that would depend on the A-gate voltage. The Pauli exclusion principle would not allow both
electrons to hop into the same atom unless their spins were opposite, and a hop would change the capacitance
between the neighboring A electrodes. This same mechanism may also enable qubit states to be initialized, since
each can be measured individually, and the measured state could be reversed with an NMR pulse if necessary.
Neither controlled qubit entanglement, two-qubit gates, nor quantum logic has yet been demonstrated for the
silicon-based quantum computer concept. Unless such elementary operations can be robustly demonstrated, then
the scalability supposedly offered by this approach or any other will be irrelevant. Much greater effort is needed
in the calculation and measurement of various possible spin decoherence mechanisms for electrons and nuclei
at donors, free electrons in real silicon heterostructure materials, and entangled states. Some possible sources
of qubit decoherence include solid state fluctuations, erroneous donor locations, silicon isotope contamination,
phonon scattering, dipolar interactions between electron spins, electromagnetic field fluctuations, low-frequency
gate voltage fluctuations, thermal fluctuations of gate voltages, charge motion within the semiconductor host,
and gate calibration noise. Before such a device can be successfully implemented, many formidable technological
problems must be overcome, including: single-spin measurement; demonstrating robust two-qubit operations; em-
placement of individual phosphorus atoms in a prescribed regular array in a perfect silicon crystal; development
of defect-free semiconductor and overlaying layers; limitation of the decoherence rate of the phosphorus qubits in

326  Proc. of SPIE Vol. 5115



the presence of electrode fluctuations, gate biasing, rf-induced eddy currents, charge fluctuations, spin impurities,
and crystal defects; sufficient limitation of the probability of error in each operation; and nanoscale fabrication. If
these and other obstacles can be overcome, this approach may offer the possibility of a quantum computer which
is scalable to the large number of qubits required for large scale quantum computation

Another popular potentially scalable solid-state approach to quantum computer development is the quantum-
dot quantum computer. Various approaches have been considered [64,116]. In one popular concept [117-120],
a qubit would be the two spin states of an electron in a single-electron quantum dot, and a quantum register
would consist of an array of coupled single-electron quantum dots. Each semiconductor quantum dot would
consist of one excess electron with spin 1/2 in a potential well that confines the electron in all three dimensions.
Quantum gate operations would be performed by gating of the tunneling barrier between neighboring dots, to
produce controlled entanglements of the qubits. The tunnel barrier between dots could be raised or lowered by
the application of a higher or lower gate voltage. If the barrier were sufficiently reduced, virtual tunneling could
occur, resulting in transient spin-spin coupling. Hopping to a neighboring auxiliary ferromagnetic dot might be
used to implement single qubit operations. Also, readout might be implemented through tunneling to a neigh-
boring auxiliary paramagnetic dot, which could nucleate a ferromagnetic domain that could then be measured.
Alternatively, spin-dependent tunneling into another neighboring auxiliary dot might enable spin measurement
by means of an electrometer. Reversing this procedure might accomplish general state preparation. Ground state
preparation could be accomplished by cryogenic cooling in a uniform applied magnetic field. Quantum computer
implementations have also been proposed that would use electron spin in quantum dots manipulated with cav-
ity QED methods [121]. Some possible sources of spin-qubit decoherence include spin-orbit coupling, coupling
to environmental electron and nuclear spin states, any interactions ignored in the qubit Hamiltonian, magnetic
field inhomogeneities and fluctuations, off-resonant spin-flip transitions, and hyperfine interactions [63,116,122].
In other approaches based on quantum dots, the qubit does not consist of electron spin states, but instead of
pseudo-spin states, corresponding to charged orbital degrees of freedom [123,124]. Pseudo-spin can have numerous
internal degrees of freedom which can cause decoherence. (Real spin has the advantage of permanent well-defined
qubits with no extra dimensions for qubit state leakage, and much longer dephasing times.) Gate operation may
also be performed by spectroscopic manipulation. Coherent optical control of quantum-dot states is an important
area of research. Picosecond optical excitation can be used to coherently control quantum-dot states on a time
scale which is small compared to the decoherence time. Some encouragement for the charge-qubit approach was
offered by the experimental demonstration of exciton entanglement in a single quantum dot [125,126], and also
in a pair of quantum dots [127]. However, no two-qubit gate operations involving neighboring dots have yet
been demonstrated in any quantum dot approach. Exciton-based qubits are many-body excitations and may
not be sufficiently stable and robust to enable large scale controlled entanglement. Possible sources of charge
qubit decoherence include voltage fluctuations on control gates, uncontrolled distant charge motion, phonon in-
teractions, and other scattering mechanisms. Generally it is expected that solid-state systems, because of their
complex internal field and many-particle environment, will subject qubit states to numerous possible mechanisms
of quantum decoherence, presenting formidable obstacles to the development of a practical large-scale quantum
computer based on the quantum-dot approach.

11 SUPERCONDUCTING QUANTUM COMPUTERS

Efforts also are under way to develop scalable superconducting quantum computers. First consider the Joseph-
son junction quantum computer [52,62,63,99,128-131]. In one relatively simple exploratory approach, a nano-
electronic device would consist of an array of low-capacitance Josephson junctions [130,131]. The device would
exploit coherent tunneling in the superconducting state, with the possibility of controlling individual charges by
means of Coulomb blockade effects. The Josephson junction qubit is implemented in a small superconducting
island connected by a tunnel junction to a superconducting electrode. The qubit consists of two charge states
of the superconducting island adjacent to the junction. The logical states differ by one Cooper-pair charge. A
Cooper pair consists of two electrons bound together through a phonon interaction. The island is connected to
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an ideal voltage source with a gate capacitor between them. An array of such Josephson junction qubits, each
with its own voltage source, could be connected in parallel with each other and also with a mutual inductor.
The array would serve as a quantum register. One- and two-qubit gates may be implemented by application of
appropriate sequences of voltages across the junctions, and by the tuning of selected qubits to resonance. Readout
might be accomplished by capacitively coupling a dissipative normal-metal single-electron transistor to a qubit.
This simple design presents various challenges: it requires high-precision timing control, and it involves residual
two-qubit interactions that will produce errors. An improved design has been considered in which the Josephson
Jjunctions are replaced by SQUIDs (superconducting quantum interference devices), which can be controlled by
magnetic fluxes [130]. This design might enable exact on-off switching of the two-qubit coupling, relaxation of the
timing control and system parameter requirements, and complete control of two-qubit couplings. Parallel opera-
tions on different qubits might be achieved, in principle, by more advanced designs, including additional tunable
SQUIDs to decouple different parts of the circuit. Scaling to large numbers of qubits with massively parallel op-
eration will necessitate much more elaborate designs, significant progress in nanotechnology, reduction in working
temperature, near perfect control of time-dependent gate voltages, and much longer decoherence times. Some
possible sources of decoherence for charge qubits include the electromagnetic environment, spontaneous photon
emission, external charge and voltage noise due to charge impurities in fabricated circuits or voltage fluctuations
in the current coupled to the qubits, quasiparticle effects in the superconducting circuits, coupling to electronic
measuring device and control circuits, and coupling to spin impurities in the solid state environment [63].

The quantized flux in a SQUID can also be used as the basic qubit, instead of the charge of a Josephson
junction island. This would provide the basis for a potential SQUID quantum computer [62,132-135]. Although
SQUIDs are macroscopic objects, and macroscopic objects generally suffer decoherence in the extreme, many of
the dissipative mechanisms that normally operate in macroscopic systems can be eliminated in SQUID systems
(3,136,137]. The Hamiltonian of an rf SQUID can be represented as a two-state system [137]. The SQUID
consists of a single tunnel junction with critical current shunted by an inductor. If a magnetic flux of half
the fundamental flux quantum is applied to the loop, and appropriate constraints on the critical current and
inductance are satisfied, then a two-state system can be created, in which the two states correspond to the loop
containing either one flux quantum or none at al [132]. A supercurrent then circulates the SQUID ring in either
direction. Important issues in the SQUID approach to quantum computer development include the required
operating temperature, required junction quality, suppression of competing modes, magnetic coupling of flux
qubits to magnetic impurities, unidentified decoherence mechanisms, sufficiently small junction capacitances, and
required fabrication technology. Some possible sources of decoherence for flux qubits include external flux/current
noise due to magnetic impurities in the fabricated circuit or current fluctuations in the circuits coupled to the
qubit, quasiparticle effects in the superconducting circuit, magnetic fluctuations due to nuclear spins in the solid,
electromagnetic radiation by the qubit, and unwanted coupling to other flux qubits [62,63].

It is encouraging for the superconducting approach that coherent tunneling of Cooper pairs, Cooper-pair
qubit control and Rabi oscillations, resonant tunneling of the flux between quantized energy levels in different
SQUID flux states, and quantum superposition of states have been theoretically investigated and experimentally
demonstrated [52,53,62,63,128,129,133-136,138-144]. One must also be able to entangle multiple qubits with each
other, and there may be decoherence mechanisms that can only occur for highly entangled states. No two-qubit
operations or quantum logic gates have yet been experimentally demonstrated in any superconducting approach.

12 NEUTRAL ATOM QUANTUM COMPUTERS

Another innovative approach to quantum computer development involves trapped atoms in optical lattices.
Lasers can be used to confine ultracold atoms in periodic lattices. The atoms are held together with light
(instead of chemical bonds, as in a solid). Laser cooling and trapping techniques, used in producing Bose-Einstein
condensation, are also used to form optical lattices. In an optical lattice, ultracold atoms can be arranged in a
crystal-like array in an optical potential in which the intensity or polarization of light varies periodically. Near
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zero temperature, webs of interfering laser beams can be used to cool a collection of atoms, and the atoms become
suspended in well-defined positions in the interfering beams. The separations of the atoms in an optical lattice
are hundreds of times that in an ordinary solid. A goal is to achieve a high filling factor with all lattice sites
occupied. The potential well depth is far less than that in a solid, and the dynamical oscillations of the atoms are
far lower in frequency than in a solid. Defects and impurities are absent in the optical lattice. Through changes
in the polarization and the direction of propagation of the laser beams, many different crystalline structures can
be created in one, two, or three dimensions. The optical potential seen by an atom in an optical lattice depends
on the magnetic quantum number of the atom. Dissipation and decoherence in optical lattices occurs due to
spontaneous emission. Evaporative cooling may be able to produce lattices in which every site is filled. Atoms
can be trapped in a two-dimensional lattice and cooled to the zero point of motion by resolved-sideband cooling.
These characteristics are important for initial state preparation and the manipulation of quantum states.

An optical lattice may serve as the arena for neutral atom quantum computers. It may become possible to
implement quantum logic with neutral atoms trapped in an optical lattice, very far off resonance [63,145-150]. A
qubit would consist of two states of an atom. If the lasers are detuned very far off resonance, photon scattering is
made negligible, and high laser intensities can maintain substantial potential wells. By means of laser cooling, the
atoms can be prepared in the ground state of the potential well. The lattice geometry can be varied dynamically:
changing the angle between different laser polarizations can control the distance between wells. Two atoms
trapped in neighboring wells can be forced into the same well by varying the polarization of the trapping lasers. An
auxiliary laser can then induce a near-resonant electric dipole, and the electric dipole-dipole potential can provide
the predominant interaction between the atoms. Following this, the atoms can be separated by adiabatic rotation
of the laser polarization. Quantum gates may be implemented through the induced coherent dipole interactions.
Single qubit operations could be performed with polarized resonant Raman pulses. Two-qubit operations require
conditioning the state of one atom on that of the other. A controlled-NOT gate could be achieved by conditioning
the target atomic resonance on a resolvable level shift induced by the control atom. The resonant dipoles would be
conditionally turned on only during conditional logic operations, and environmental decoherence would be thereby
suppressed. Large numbers of atoms could be entangled by a sequence of two-qubit interactions. If the atoms
are lightly confined to separations small relative to the wavelength, then a coherent dipole-dipole interaction
could be induced with negligible photon scattering. The coherent level shift could thereby be substantially
enhanced, while the cooperative emission rate could be substantially suppressed. The atoms couple very weakly
to the environment and would interact only during two-qubit logical operations, and all manipulations would be
performed rapidly relative to the photon scattering rate, thus impeding spontaneous emission, which is the main
source of decoherence. Some possible sources of quantum decoherence in neutral atom quantum computers may
include spontaneous emission, photon scattering, unwanted elastic and inelastic collisions, unwanted entanglement
between motional and internal states, spin couplings, motional state perturbations, trapping-field fluctuations,
time-varying magnetic fields, and laser noise. Although single-qubit rotations are readily performed, no two-
qubit gates have yet been implemented in the neutal atom approach. The decoherence time must be much longer
than the two-qubit gate time. Also, before an operational neutral atom quantum computer can be successfully
developed to perform even elementary quantum computations, many issues must be explored, including increasing
the filling fraction of atoms in the lattice, developing methods for addressing and reading out individual qubits,
investigating the effects of atomic collisions, and implementing quantum error-correction methods.

Bose condensates in optical lattices may provide a further innovation in quantum computer development. Bose
condensates can be confined in an optical dipole trap. They can also be created in an optical lattice, and the theory
of condensates in optical potentials has been investigated. A very innovative scheme was proposed [151] to fill an
optical lattice with a Bose condensate, and exploit ideas related to Mott transitions in optical lattices [152]. A
far-detuned optical lattice acts as a conservative potential and can be loaded with a Bose condensed atomic vapor,
resulting in tens of atoms per lattice site. It was argued [152] that the dynamics of bosonic atoms corresponds
to that of a Bose-Hubbard model, which describes the hopping of bosonic atoms between the lowest vibrational
states of lattice sites. The important system parameters can be controlled by appropriate laser parameters and
configurations. The model predicted a phase transition from the superfluid phase to the Mott insulator phase at
low temperature. This can result in the formation of an optical crystal with long range order and period controlled
by the laser light. A finite gap would be produced in the excitation spectrum. The superfluid/Mott-insulator

Proc. of SPIE Vol. 5115 329



transition was observed for the first time in recent experiments [153]. Average occupations of several atoms
per well were achieved. An optical crystal could be created with uniform lattice occupation, or tailored atomic
patterns could be produced. This would occur at sufficiently low temperature that cold laser-controlled coherent
interactions could implement conditional dynamics in moving trap potentials. Methods have been investigated
for producing two-qubit quantum gates and highly entangled states, and may provide the basis for a possible
Bose-condensate quantum computer.

13 QUANTUM ERROR CORRECTION

Quantum error-correction methods may provide the means to successfully combat decoherence in quantum
computers and other qubit devices [56,59,64,69,99,154-184]. Quantum error correctors are implementations of
these methods that involve quantum circuits consisting of networks of quantum gates. The interaction of a qubit
in a general state,

|6) = al0) +0]1), (82)

with its environment in state |e), results, in general, in the following entanglement between the qubit and its
environment [69,179]:

le) [8) = le} (a]0) + b|1)) = a(coo eoo) |0) + co1 |eoo) [1)) + b (cr0 |ero) I1) + 11 ler1) [0)) , (83)

where |e;;) denote states of the environment, and ¢;; are complex coefficients that depend on the environmental
interactions with the qubit. Equivalently, Eq. (83) can be rewritten as follows [69]:

le)16) = (ler) I +|ex) X + ley) Y + |ez) Z) |4) , (84)

where the operators {I, X,Y, Z} are defined by
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The corresponding matrix representatives are also given in Egs. (85) to (88) (these matrices can also be simply
related to the Pauli spin matrices). Note that by completeness, I, in Eq.(85), is the identity operator, which
corresponds to the unit matrix. Also, the operator X, Eq.(86), is the NOT operator, since in matrix form one
has

X = [(mlXlaf] = Ll (0) 01+ ) @D 1) = ((§ 5 ) = (59)

Analogously, one obtains the matrix representatives shown for Z and Y in Eqs. (87) and (88), respectively. Also,
in Eq. (84), the states |es), |lex),ley),and |ez) are given by

ler) = 27" (coo leao) + c10]e10)), (90)
lex) =271 (co1 |eor) + cr1 lenn)), (91)
ley) = 27" (co1 leor) — en1 lenn)), (92)
lez) = 27! (coo |eco) — c10 |e10)) - (93)
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Equation (84) represents three types of errors, corresponding to the operators X, Y, Z. The operator X represents
a bit flip, since it interchanges the basis states, thus:

0) ) ( 1) )
X | = . 94
()=l (89
The operator Z represents a phase error, since it introduces a relative phase e!™ = —1 :
b)=(o 2) () =(-0)
Z l = = . 95
()= 2) () =(0 (%)
The operator Y = X Z represents a phase change together with a bit flip, since
b) =) )=o)
Y l = = . 96
()= 3 ) 0) (#6)
To see that Eq. (84) is equivalent to Eq. (83), note that if we use Egs. (82), (85)-(88), and (90)-(93), then
le) [8) = (ler) I + lex) X + ley) Y + |ez) Z) |#)

= 271 (coo |eoo) + c10 |e10)) (10) {0 4 [1) (1]) (a]0) + b|1))
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= a(coo |eoo) |0) + co1 |eor) 1)) + b (c10 |e10) [1) + ca1 Jer1) [0)) -
Thus Eq. (84) is equivalent to Eq. (83).

Suppose that a quantum computer manipulates k qubits in the general state |¢;). Then, add n — k qubits in
the state |0) to the computer, so that there are n qubits. Next perform the encoding operation

E(I¢4) 10) = |¢£) , (98)

which produces some, in general, entangled state |¢g) of all n qubits. Then, let noise affect all n qubits. The noise
can be represented as a sum of error operators M, where each M is a tensor product of n operators I, X,Y, Z,
one acting on each qubit. For example, if I operates on qubit 1, X on 2, Z on3, X on4,Y onb5, X on6,Y on
7, and I on 8, this can be represented by the operator

M = 11XQZ3X4Y5X6Y713. (99)

Then, general interactions between the n qubits and the environment produce the general noisy state

W)y =D les) My |68) (100)

where each M, is an operator involving products of the four operators I, X, Y, Z, such that each of the n qubits is
acted on by one of them. Next, add another n — k ancilla qubits, prepared in the state |0}, . For any encoding E,
there is some operator A, called the syndrome extraction operator, which identifies the type of corrected error,
namely [69],

A(M, [65) [0),) = (M, I65)) Is), VM, € 5, (101)

where S is the set of correctable errors and depends on the encoding. Here, the symbol s in |s), is a binary

number that identifies the error operator M, considered, and the states |s), are mutually orthogonal. For the
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simple case that the general noise state |1} 5, Eq.(100), contains only M, € S, the joint state of the n non-ancilla
qubits, environment, and ancilla (following the syndrome extraction) is given by

(Z le2) M, 165) ) ] ICATRIN (102)
If the ancilla state is measured with the measurement operator |s), , (s|, then

(I8)aa (sD [¥)na = 18)aa (sl ; les:) (Ms: |6E)) |s')q = |8)q ; lest) (Ms: |6E)) 8550
= les) (Ms |6E)) |5)a 5

that is, the entire state collapses into |e;) (M; |¢E))|s), for a particular s. Thus, the measurement reveals the
value s, thereby determining the error operator M, (s is the error syndrome). Next, if the operator M; ! is
applied to the measured state by means of various quantum gates X, Y, or Z, there results

M7 (1) o (s 1¥)wa) = M7 lea) (M 8E)) [s)o] = les) |9E) |)q (104)

resulting in the noise-free state |¢g) . The state |e;) of the environment, appearing here, is of no interest, and the
ancilla state |s), can be put back in state |0), and used again. If the noise in [¢) 5, Eq. (100), contains errors M,
that are not in the correctable set .S, then the probability must be large that when the syndrome is extracted,
the state collapses onto a correctable state. The error-correction procedure must be such that the encoding
operation E and the extraction operation A are such that the set S of correctable errors includes all likely errors.
If uncorrelated stochastic noise is assumed, for which the effect on a qubit at different times is uncorrelated (and
the effect on different qubits is uncorrelated also), then all possible error operators can be categorized in terms
of their likelihood. Those affecting fewer qubits are more likely. If a quantum error-correcting code is such that
all errors affecting up to ¢ qubits are correctable, then the code is a t-error correcting code [162,163,166,168,183].
Errors can also occur in the ancilla, quantum gates, and measurements. Methods were discovered by which the
error correction suppresses more noise than it produces [170,177,179,184]. Error-correcting codes may require an
extremely large overhead in terms of the numbers of qubits (required for sufficient redundancy to recover from
errors) and of gates (required to process the redundantly encoded data and to diagnose and reverse errors). The
error probability per qubit per gate must be very small (below the accuracy threshold) if the error correction
is to succeed for arbitrarily long computations [173,175]. The requirements are formidable for reliable quantum
computing using such fault-tolerant quantum error-correcting codes [172,180]. Furthermore, quantum error-
correcting codes usually assume that errors in distant qubits are at most weakly correlated, and the codes are
inadequate to deal with strongly correlated errors involving many qubits [180].

1Y) va = A )N 10),

(103)

Note that much simpler quantum error-correction methods can be used if enough is known about the sources
of noise [45,181]. Several passive error-prevention schemes have been proposed, in which the encoding occurs
within subspaces that do not decohere because of symmetry properties [185-189]. It has been argued [187], on
the basis of a semigroup description of quantum decoherence [190,191], that error-free quantum computation is
possible in decoherence-free subspaces. The evolution of the computational degrees of freedom, which form a
subspace of the total Hilbert space describing the quantum dynamics of the qubit device and its environment,
is nonunitary, and is described by a semigroup. The decoherence-free subspaces are spaces spanned by states
annihilated by all error generators (the operators X, Y, Z in Eq. (84) are error generators). Also, various methods
of decoherence control are currently under investigation. These include the application of feedback [192,193] and
of external controllable interactions [194-196]. It is argued that the effects of qubit-environment interactions can
be removed by suitable decoupling perturbations acting on the qubit device over time scales comparable to the
correlation time of the environment.

Quantum decoherence is also an issue in quantum communication systems, in which entanglement between
widely separated states is exploited. When quantum information is sent through a communication channel
such as an optical fiber, the photons encoding the information interact with the channel material and becore
entangled with it. This results in decoherence of the information states. Quantum error correction offers one
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solution, but another solution is provided by entanglement purification [59,159,183,197,198]. In entanglement
purification, entangled Einstein-Podolsky-Rosen pairs of photons, whose fidelity has been degraded by quantum
decoherence, are distilled to a smaller number of high-fidelity pairs by means of certain local unitary operations
and measurements performed at each end of the channel, together with postselection by classical communication.
Quantum repeaters based on entanglement purification may significantly increase the achievable range of quantum
communication [199].

14 SUMMARY

Following a general discussion of the physics of quantum decoherence, we reviewed the formulation of the
persistence probability for a qubit device, as the probability of measuring its computational degrees of freedom in
the unperturbed qubit state without the decoherence arising from environmental interactions. Also, a double path
integral expression was derived for the qubit persistence probability of a qubit device interacting with its internal
and external environment represented by continuous fields. Examples of the calculation of qubit persistence
probability were presented for a generic single-qubit device coupled to a thermal environment, and a trapped-ion
quantum register coupled to its ion vibrational modes. A review was also given of various possible approaches to
quantum computer implementation, along with possible sources of quantum decoherence. Also, possible methods
were briefly reviewed for correcting qubit error, including quantum error correction, decoherence avoidance and
control, and entanglement purification. The real feasibility of developing a robust large-scale quantum computer
by any of the proposed approaches remains in question.

The detailed physics of quantum decoherence in qubit devices will be as diverse as the possible devices one
might consider, together with the variety of particular dominating environmental interactions. The structure
of the corresponding qubit-device Hamiltonians, together with the relevant environmental interaction terms, will
result in wide variations in the physical details of the decoherence process. Although decoherence is widespread in
macroscopic, mesoscopic, and many microscopic systems, it does not have a universal description. It is, therefore,

important that the phenomenon of quantum decoherence be much more extensively and thoroughly investigated,
both experimentally and theoretically, if useful qubit devices are to become a reality.
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