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ABSTRACT

Fifty years ago, when Claude Shannon was developing the Mathematical Theory of Communications, for reliable
data transmission, which evolved into the subject of information theory, another discipline was developing dealing
with Feedback Control of Dynamical System, which evolved into a scientific subject dealing with decision,
stability, and optimization. More recently, a separate discipline dealing with robustness of uncertain systems was
born in response to the codification of high performance and reliability in the presence of modeling uncertainties.
In principle, robustness in dynamical systems is captured through power dissipation via induced norms and
dynamic games, while reliable data transmission is captured through measures of information via entropy, relative
entropy, and certain laws of Large Deviations theory. The main ingredient in Large Deviations is the rate
functional (or action functional in the classical mechanics terminology), often identified through the Cramer or
Legendre-Fenchel Transform. On the other hand, robustness of stochastic uncertain systems is currently under
development, using information theoretic as well as statistical mechanics concepts, such as, partition functions,
free energy, relative entropy, and entropy rate functional.
This lecture will summarize certain connections between fundamental concepts of robustness, information theory,
and statistical mechanics, and possibly make future projections into the convergence of these disciplines.

Keywords: Stochastic Systems, Robustness, Information Theory, Statistical Mechanics, Games, Large Devia-
tions

1. INTRODUCTION

In Statistical Mechanics, the basic concept is the partition function, which describes the various states of a
system being in an equilibrium. Once the partition function is computed all thermodynamic properties of the
system are identified.
In Robust Control, the basic mathematical quantity is the H∞-norm or Induced Norm and the dissipation
inequalities, which state that the output power of the system is less than or equal to the input power of the
system.
In Information Theory, the fundamental concept is the entropy of a Random Variable and the Entropy Rate of
a sequence of Random Variables, which measure the amount of information or uncertainty associated with the
underlying random experiment.
In Large Deviations Theory, the basic concept is the Law of Large Numbers, which allows the computation of
the rate at which the probabilities of certain events decay to zero, exponentially fast. This decay is determined
once the rate functional is identified.
The scope of this paper to provide a review of recent results found in,11, 19, 20 and to introduce additional notions,
which connect Large Deviations Theory to Robustness and Dissipation. The first result of this paper is to give a
variational interpretation of the basic principle of statistical mechanics, which is subsequently employed to relate
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the Partition Function, the Free Energy, and Relative Entropy (basic concepts of Statistical Mechanics) to the
Induced Norm of Stochastic uncertain systems. Thus, establishing the precise connection between the principles
of statistical mechanics and H∞ or robustness of uncertain systems.
The second result of this paper is to relate the Free Energy of the system to Entropy Rate Functionals, via the
Theory of Large Deviations. In particular, it is shown that the Cramer or Legendre-Fenchel Transform of Large
Deviations is equivalent to the dual functional of a primal robustness problem.
The third result of the paper is to introduce max-plus measures using the entropy rate functional of Large
Deviations, and then show that it is a measure of information, similar to that of Shannon (Average Entropy).
Subsequently, to relate the Free Energy of a dynamical system to Storage functions arizing in dissipative systems.
The above results are applied to two robustness problems. The first problem is concerned with a class of uncertain
stochastic control systems, in which the pay-off is described by the relative entropy between the nominal measure
and the uncertain measure. The set of uncertain measures considered are described through energy inequality
constraints expressed in terms of the uncertain measure. When stochastic dynamical systems are considered,
this problem is equivalent to the sub-optimal disturbance attenuation problem arising in H∞ control.9–11

With respect to this formulation, several properties of the optimal solution are discussed, and relations to
Statistical Mechanics, Robust Control, Risk-Averse/Risk-Seeking strategies, and Cramer’s Theorem of Large
Deviations are identified. The implication of these results to minimax games and several monotonicity properties
of the optimal strategies are derived.9

The second problem is concerned with the formulation of stochastic optimal control systems, in which uncertainty
is described by a relative entropy constraint between the nominal measure and the uncertain measure, while the
pay-off is a functional of the uncertain measure. This is a minimax game in which the controller seeks to minimize
the pay-off, while the disturbance described by a set of measures aims at maximizing the pay-off. When stochastic
dynamical systems are considered, this problem is equivalent to the optimal disturbance attenuation problem
arising in H∞ control.17

Some of the results presented in this paper have appeared in,20, 21 while additional connections between the
concepts under investigation can be found in.?, 19

2. STATISTICAL MECHANICS

Boltzman linked the microscopic properties of the particles that composed a thermodynamic system with their
associate macroscopic properties by his celebrated equation

S = k ln Ω (2.1)

where S is the entropy, macroscopic property, and Ω the number of microstates that are compatible with the
state. Starting from this equation and using combinatorial arguments that are taking into consideration the
various possible states that the system can access, in our case, n, it can be shown that the entropy is given by

S = −k

n∑

i

p∗i ln p∗i (2.2)

where k = 1.3806503×10−23 J
K is the Boltzmann constant and p∗i is the probability of finding the system in state

i.
For a thermodynamic system in contact with a heat bath of temperature T, Gibb’s computed p∗i to be,

p∗i =
e−Ei/kT

Q
; Q =

n∑

j=1

e−Ej/kT (2.3)

where Q is the partition function of the system. Substituting (2.3) in (2.2) the Helmhotz free energy F , a
macroscopic thermodynamic quantity can be expressed in terms of the partition function Q as,

F = −kT ln Q = −kT log
N∑

j=1

e−Ej/kT (2.4)
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Hence,

F =
n∑

i=1

Eip
∗
i + kT

n∑

i

p∗i ln p∗i = U(p∗) − kTS(p∗) (2.5)

Therefore, starting from the partition function, a mathematical structure that counts the number of possible
microstates of a system the various thermodynamic quantities can be obtained.20

2.1. Variational Interpretation of Statistical Mechanics

The following theorem gives a variational interpretation of the basic principle of Statistical Mechanics. It will
be used in subsequent sessions to related the statistical mechanics concepts to robustness concepts.

Theorem 2.1. Let Σ a non-empty denumerable set endowed with the discrete topology and M(Σ) =
{

π =

(π1, . . . , πN ), πj ≥ 0,
∑N

j=1 πj = 1, 1 ≤ j ≤ N
}
.

1) For every measurable function Ej : Σ → �, 1 ≤ j ≤ N , and a fixed probability vector µ ∈ M(Σ)

log
( N∑

j=1

e
−Ej(x)

kT µj(x)
)kT

= sup
ν∈M(Σ)

{
−

N∑

j=1

Ej(x)νj(x) − kT

N∑

j=1

νj(x)
µj(x)

log
νj(x)
µj(x)

}
(2.6)

Moreover, the supremum is attained at

ν∗
n(x) =

e−En(x)/kT µn(x)
∑N

j=1 e−Ej(x)/kT µj(x)
, 1 ≤ n ≤ N (2.7)

2) For every measurable function Ej : Σ → �, 1 ≤ j ≤ N

log
( N∑

j=1

e
−Ej(x)

kT

)kT

= sup
ν∈M(Σ)

{
−

N∑

j=1

Ej(x)νj(x) − kT

N∑

j=1

νj(x) log νj(x)
}

(2.8)

Moreover, the supremum is attained at

ν∗
n(x) =

e−En(x)/kT

∑N
j=1 e−Ej(x)/kT

, 1 ≤ n ≤ N (2.9)

3) The basic principle of Statistical Mechanics, (2.8), (2.9) are the dual equations associated with the primal
problem of maximizing the Entropy subject to an average energy constraint, defined by

sup
ν∈M(Σ)

{
− k

N∑

j=1

νj(x) log νj(x)
}

; subject to
N∑

j=1

Ej(x)νj(x) ≤ γ, γ ∈ � (2.10)

Proof. Follows from Theorem 3.1.

Therefore, the optimal measure ν∗ can be characterised as the measure closest to the nominal measure
(uniform measure in this case) and satisfies the constraint on the expected values of the random variables Ej .

3. ROBUSTNESS OF UNCERTAIN STOCHASTIC SYSTEMS

In this section the abstract formulation of the relevant problems together with a theorem that associates the
tilted measure with this formulation are introduced.
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3.1. Abstract Formulation

Let (Σ, d) denote a complete separable metric space, and (Σ,B(Σ)) the corresponding measurable space in
which B(Σ) are identified as the Borel sets generated by open sets in Σ. Let M(Σ) denote the set of probability
measures on (Σ,B(Σ)), Uad the set of admissible controls, and B(Σ;�) the set of bounded real-valued measurable
functions, �u : Σ → � for a given u ∈ Uad.

Here, M(Σ) denotes the set of all possible measures induced by the stochastic systems, while �u ∈ B(Σ;�)
denotes the energy function or fidelity criterion associated with a given choice of the control law u ∈ Uad.

3.2. Tilted Measure

The following theorem characterises the tilted measure associated with the problems whose abstarct formulation
is given above and it is employed in subsequent analysis.

Theorem 3.1. For every measurable function �u : Σ → � bounded below and µu ∈ M(Σ) and s > 0

log
(∫

Σ

e
�u

s dµu
)s

= sup
{νu∈M(Σ);H(νu|µu)<∞}

{∫

Σ

�udνu − sH(νu|µu)
}

(3.11)

Moreover, if �ue
�u

s ∈ L1(µu), then the supremum is attained at

dνu,∗ =
e

�u

s dµu

∫
Σ

e
�u

s dµu

Proof. The derivation is similar to the one found in,8 which treats the case s = 1.

It is clear that there is one to one relation between Theorem 2.1 and Theorem 3.1. In fact, Theorem 2.1 is a
special case of Theorem 3.1, simply let s → kT, �u → −E, µu → ∑N

j=1 δ(x − j). Therefore, any problem which
is related to Theorem 3.1, it is also related to the Statistical Mechanics equations.

3.3. Robustness of Stochastic Uncertain Systems: An Energy Constraint Formulation

In this section, the first optimization problem described in the introduction is introduced.

3.3.1. Problem Statement

Definition 3.2. Let u ∈ Uad, let �u ∈ B(Σ;B(Σ)) (the space of bounded continuous functions), and µu ∈ M(Σ)

which is a fixed nominal measure, and m
�
= Eµu =

∫
Σ

�udµu, γ ∈ � .
1) Find νu,∗ ∈ M(Σ) which solves

J(u, νu,∗) = inf
{νu∈M(Σ);

∫
Σ

�udνu≤γ, H(νu|µu)<∞}
H(νu|µu) (3.12)

for the following two cases.
Case 1. m

�
= Eµu(�u) =

∫
Σ �udµu > γ; Case 2. m

�
= Eµu(�u) =

∫
Σ �udµu < γ;

2) Find νu,∗ ∈ M(Σ) which solves

J(u, νu,∗) = inf
{νu∈M(Σ);

∫
Σ

�udνu≥γ, H(νu|µu)<∞}
H(νu|µu) (3.13)

for the following two cases.
Case 1. m

�
= Eµu(�u) =

∫
Σ

�udµu < γ; Case 2. m
�
= Eµu(�u) =

∫
Σ

�udµu > γ;

Remark 3.3. The fidelity constraints Eνu(�u) ≤ γ, Eνu(�u) ≥ γ represent average energy constraints with
respect to the unknown measure νu ∈ M(Σ), such as integral quadratic constraints, tracking errors, etc., while
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γ is a parameter which is in some relation with m
�
= Eµu(�u), that is, either m > γ or m < γ. In particular, as

shown in subsequent sections, the case (3.12), with m > γ will correspond to the optimistic scenario (emphasizing
the best cases) in which the strategies are risk-seeking, while the case (3.13), with m < γ will correspond to the
pessimistic scenario (emphasizing the worst cases) in which the strategies are risk-averse.

The above problems have various implications in minimax games, some of which are described below.

3.3.2. Related Problems

Disturbance Attenuation in Robustness. For a given u ∈ Uad let L2(νu;H)
�
=

{
φu : Σ → H; φu is a

measurable random variable such that
∫
Σ ||φ||2Hdνu < ∞

}
denote the Hilbert Space of random variables. Let

L2(νu;Z) and L2(νu;D) denote the Hilbert Spaces of tracking signals and disturbance signals, respectively. For
a given u ∈ Uad, let T u : D → Z be a bounded linear operator with induced norm defined by

J(u)
�
= ||T u|| = sup

||d||L2(νu;D) �=0

||z||2L2(νu;Z)

||d||2L2(νu;D)

(3.14)

The sub-optimal disturbance attenuation is to ensure that for all u ∈ Uad that J(u) ≤ 1
s , s > 0, which is

equivalent to

Js(u) = sup
d∈L2(νu;D)

{
s

∫
||z||2Zdνu − 1

2

∫
||d||2Ddνu

}
= − inf

d∈L2(νu;D)

{∫
||d||2Ddνu − s

∫
||z||2Zdνu

}
(3.15)

and ensuring that the pay-off is non-positive.
When νu is absolutely continuous with respect to µu, then it can be shown (see11) that H(νu|µu) = 1

2

∫ ||d||2Ddνu.
Therefore, the dual functional associated with converting the primal problem (3.13) into the equivalent uncon-
strained optimization

Js,γ(u, νu,∗) = inf
νu∈M(Σ)

{
H(νu|µu) − s

(
Eνu

(
�u

)
− γ

)}
(3.16)

is equivalent to the sub-optimal disturbance attenuation problem (3.15) (let �u = ||z||2Z). Moreover, larger
values of s imply higher attenuation and hence higher dissipation. An application of the above results to general
nonlinear partially observable systems is discussed in.11

Legendre-Fenchel or Cramer Transform. In the context of large deviations, the dual functionals associated
with converting the primal problems (3.12), (3.13) into equivalent unconstrained optimization problems are equal
to the Legendre-Fenchel or Cramer transforms of �u defined by

I(γ)
�
= sup

s∈�

{
sγ − log Eµu

{
es�u

}}
= sup

s∈�
inf

νu∈M(Σ)

{
H(νu|µu) − s

(
Eνu

(
�u

)
− γ

)}
(3.17)

The Legendre-Fenchel or Cramer transform of �u is employed in Large Deviations Theory to identify the entropy
rate functional I(γ) associated with rare events.

Optimistic Versus Pessimistic Optimization. In the context of robust disturbance attenuation of uncertain
systems, the measure µu ∈ M(Σ) corresponds to the nominal measure, νu ∈ M(Σ) corresponds to the uncertain
measure, and the fidelity constraints Eνu

{
�u

}
≤ γ and Eνu

{
�u

}
≥ γ represent average energy constraints.

It can be shown that9:

1. for (3.12) the average energy constraint with respect to all uncertain measures νu << µu, Eνu

{
�u

}
≤ γ, is

below the average energy of the nominal model, Eµu

{
�u

}
> γ; hence it represents an optimistic scenario.
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2. for (3.13) the average energy constraint with respect to all uncertain measures νu << µu, Eνu

{
�u

}
≥ γ is

above the average energy of the nominal model Eµu

{
�u

}
< γ; hence it represents a pessimistic scenario.

The parameter s ∈ � is the Lagrange multiplier associated with the dual functional of the primal problems
(3.12), (3.13). In particular, s ≤ 0 corresponds to (3.12) while s ≥ 0 corresponds to (3.13).

Risk-Averse Versus Risk-Seeking Optimization. In the context of risk-sensitive pay-offs, (3.12) corre-
sponds to an optimistic pay-off functional (emphasizing the best cases) in which the strategies are risk-seeking,
and (3.13) corresponds to a pessimistic pay-off functional (emphasizing the worst cases) in which the strategies
are risk-averse. Moreover, in the context of uncertain stochastic systems, risk-averse strategies always imply
dissipation inequalities.

3.4. Robustness of Stochastic Uncertain Systems: A Relative Entropy Constraint
Formulation

In this section the second optimization problem described in the introduction is considered.

3.4.1. Problem Statement

Definition 3.4. Let u ∈ Uad, �u measurable and bounded below, �u ∈ L1(µu), µu ∈ M(Σ) which is a fixed
nominal measure, and R ∈ (0,∞).
Find νu,∗ ∈ M(Σ) which achieves the supremum

J(u, νu,∗) = sup
{νu∈M(Σ);H(νu|µu)≤R}

∫

Σ

�udνu, R ∈ (0,∞) (3.18)

Next, for every s ∈ �, define the Lagrangian associated with the problem of Definition 3.4

Js,R(u, νu)
�
= Eνu(�u) − s

(
H(νu|µu) − R

)
(3.19)

and its associated dual functional

Js,R(u, νu,∗) = sup
{νu∈M(Σ)}

Js(u, νu) (3.20)

3.4.2. Related Problems

Disturbance Attenuation in Robustness. For a given u ∈ Uad, let T u : D → Z be a bounded linear operator
with induced norm defined by

J(u, d∗)
�
= ||T u|| = sup

||d||L2(νu;D) �=0

||z||2L2(νu;Z)

||d||2L2(νu;D)

= sup
1
2 ||d||L2(νu;D)≤R

||z||2L2(νu;Z) (3.21)

Then the optimal control u∗ ∈ Uad is found by minimizing the induced norm

J(u∗, d∗)
�
= inf

u∈Uad

||T u∗ || = inf
u∈Uad

sup
1
2 ||d||L2(νu;D)≤R

||z||2L2(νu;Z) (3.22)

Moreover, the optimal control u∗ ∈ Uad is found by minimizing the induced norm, and it is given by

Js∗
(u∗, d∗) = inf

u∈Uad

inf
s≥0

sup
d∈L2(νu;D)

{∫
||z||2Zdνu − s

(1
2

∫
||d||2Ddνu − R

)}
(3.23)
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in which infu∈Uad
infs≥0 is interchanged.

When νu is absolutely continuous with respect to µu, and the nominal model is described by stochastic differential
equations which are driven by Brownian motion or general Martingales, then it can be shown that H(νu|µu) =
1
2

∫ ||d||2Ddνu. In this case, the primal problem (3.22) and its dual problem (3.23) are equivalent to the problem
of Definition 3.4 (let �u = ||z||2Z). Moreover, smaller the values of s the higher the attenuation and hence the
higher dissipation of otput power with respect to the input power.19

Risk-Averse Versus Risk-Seeking Optimization. In the context of risk-sensitive pay-offs, the problem of
Definition 3.4 corresponds to an optimistic pay-off functional (emphasizing the best cases), when the Lagrange
multiplier s ≤ 0, in which the strategies are risk-seeking, and to a pessimistic pay-off functional (emphasizing
the worst cases) in which the strategies are risk-averse, when the Lagrange multiplier s ≥ 0.

4. LARGE DEVIATIONS THEORY AND RELATED DETERMINISTIC MEASURES

In this section, we start with the abstract formulation of the Large Deviations (LD) problems (see22–24). We
seek to identify deterministic measures and axioms which emerge from the LD theory. In the process we will
broach key results of LD theory to information theoretic deterministic measures, and in subsequent sections to
the extremal theory of H∞ optimization.

Throughout we let X be a Polish space (e.g., complete separable metric space), BX the Borel algebra of X , and
{P ε}ε>0 a family of probability measures on BX . LD theory studies the deviant behaviors of the events O ∈ BX
for which x0 /∈ O, in terms of the rate at which P ε(O) → 0, as ε → 0, by seeking expressions of the form

P ε(O)) = exp
{I(x)

ε
+ o(1)

}
, I : X → [−∞, 0] (4.24)

To illustrate the application of LD we consider a simple example in which {P ε}ε>0 are absolutely continuous
with respect to some fixed measure Q, so we can write dP ε(x) = Cε exp

{
I(x)

ε

}
dQ, I : X → [−∞, 0, where

I(x) = 0 if and only if x = x0 (x0 being a typical element of X ). Assuming limε→0 ε log Cε = 0 uniformly, then
for any C ∈ BX with Q(C) < ∞, we have

ε log P ε(C) = log
( ∫

C
Cε exp

(I(x)
ε

)
dQ

)ε

; lim
ε→0

ε logP ε(C) = log ess sup
{

exp
(
I(x)

)
; x ∈ C

}

Hence, for a family {P ε}ε>0 which is absolutely continuous with respect to Q, denoted by P ε << Q,∀ε > 0, on
(X ,BX ), which satisfy Q(C) < ∞, for any C ∈ BX , define

µ(C)
�
= lim

ε→0
ε log P ε(C) = ess sup

{
I(x); x ∈ C

}
(4.25)

Then for countable unions C =
⋃∞

i=1 Ai we have

µ(C) = ess sup
{

I(x); x ∈
∞⋃

i=1

Ai

}
= sup

i

{
ess sup

{
I(x); x ∈ Ai

}}
, Ai

⋂
Aj = ∅, ∀i 	= j, ∀{Ai} ∈ BX . (4.26)

We note that if (X ,BX ) = (�d,B(�d)) and dQ(x) = d��d(x) the Lebesgue measure on �d and

dP ε(x) =
1

(2πε)
d
2

exp
(
− ||x||2�d

2ε

)
d��d(x) (4.27)

then

µ(C)
�
= lim

ε→0
ε logP ε(C) = ess sup

{
− ||x||2�d

2
: x ∈ C

}
, C ∈ BX (4.28)
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For disjoint open sets {Ai} ∈ X we have

µ(C) = sup
{
I(x); x ∈

n⋃

i=1

Ai

}
= sup

i

{
sup

{
I(x); x ∈ Ai

}}
, Ai

⋂
Aj = ∅, ∀i 	= j, ∀{Ai} ∈ X . (4.29)

Therefore, the density associated with the measure defined by (4.28) is I(x) = − ||x||2�d

2 . Guided by the above
introduction, next we introduce the precise conditions for an underlying family of probability spaces to satisfy
the LDP.

Definition 4.1. (Large Deviations Principle).22–24 Let
{(

X ,BX , P ε
)}

ε>0
be a family of complete probability

spaces indexed by ε and let

µε
X (A) = ε log P ε(A), µX (A)

�
= lim

ε→0
µε
X (A), A ∈ BX

provided the limit exists.
We say that this probability space satisfies the Large Deviations Principle (LDP) with real-valued rate function
IX (·), denoted by

{(
X ,BX , P ε

)}

ε>0
∼ IX (x) if there exists a function IX : X → [−∞, 0] called the action

functional which satisfies the following properties.

1. −∞ ≤ IX (x) ≤ 0, ∀x ∈ X
2. IX (·) is Upper Semicontinuous (u.s.c))

3. For each C ∈ BX

lim
ε→0

sup ε log P ε(C) ≤ sup
x∈C̄

IX (x) (4.30)

where C̄ is the closure of the set C ∈ BX .

4. For each C ∈ BX

lim
ε→0

inf ε log P ε(C) ≥ sup
x∈O0

IX (x) (4.31)

where C0 is the interior of the set C ∈ BX .

5. If C ∈ BX is such that

sup
x∈C0

IX (x) = sup
x∈C

IX (x) = sup
x∈C̄

IX (x) (4.32)

then

µX (C) = sup
x∈C

IX (x) (4.33)

and C ∈ X is called a continuity set of IX (·). If (4.32) holds for all elements C ∈ BX then BX is called a
continuity σ−algebra of IX (·).
In 3, 4, 5 the supremum over an empty set is defined to be −∞.

Note that P ε(X ) = 1, ∀ε > 0 implies that supx∈X IX (x) = 0, and hence there exists at least one x0 ∈ X for
which IX (x0) = 0. If A ∈ BX is a set of measure zero, that is, P ε(A) = 0, ∀ε > 0, then supx∈A0 IX (x) = −∞,
which is the supremum of a functional over an empty set. Moreover, P ε(A) ∈ [0, 1], ∀ε > 0,A ∈ BX , implies that
−∞ ≤ supx∈A0 IX (x) ≤ supx∈Ā IX (x) ≤ 0. Thus, for continuity σ−algebras, the measure µX (·) defined above
has the properties of a (max,plus) measure.
Next, we shall introduce two fundamental Theorems associated with the LDP, which will lead to the conclusion
that if BX is a family of continuity sets of IX (·) then µX (·) define above is a deterministic (max,plus) measure.

Assumptions 4.2. In subsequent discussions, and unless otherwise state, we assume that all LD statements are
with respect to continuity sets of IX (·), so that (4.32) is satisfied and (4.33) is well defined.
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4.1. Deterministic Measures

Armed with the above statements we shall show that if the family of probability spaces
{(

X ,BX , P ε
)}

ε>0

satisfies the LDP with rate IX (·), then the rate induces a (max,plus) measure defined by

µX (O)
�
= lim

ε→0
ε logP ε(O), ∀O ∈ BX (4.34)

Indeed, the countable additivity property of the measure for any finite collection {Ai}n
i=1 of disjoint sets in BX ,

follows from the statements preceding Lemma 3.2, since

µX
( n⋃

i=1

Ai

)
= lim

ε→0
ε log

∫

A1

⋃
...

⋃
An

dP ε(x) = lim
ε→0

ε log
( n∑

i=1

∫

Ai

dP ε
)

= sup
1≤i≤n

{
IX (Ai)

}
, IX (Ai)

�
= µX (Ai) = sup

{
IX (x); x ∈ Ai

}
(4.35)

Thus, µX (A)
�
= IX (A) is a max-plus measure, e.g., it satisfies

i)µX (A) ∈ [−∞, 0], ∀A ∈ BX ; ii)µX (Ω) = 0; iii)µX
( n⋃

i=1

Ai

)
=

n⊕

i=1

µX (Ai), Ai

⋂
Aj = ∅, ∀i 	= j, Aj ∈ BX

Thus, each x ∈ X is associate with IX (x), which is the self-rate functional. The more likely x ∈ X is the larger
the value of IX (x) ∈ [−∞, 0].

4.2. Information Theoretic Measures

In this section we illustrate the importance of the rate functionals in defining entropy which is another form of
Shannon entropy.

4.2.1. Shannon Entropy

One of the fundamental concepts of information theory is the concept of entropy which is a measure of uncertainty
of a R.V. Let

{(
X ,BX , P ε

X

)}

ε>0
be a family of probability spaces, and X : (Ω,F) → (X , BX ) a R.V. defined on

it. Suppose that X is the output of a discrete information source having a finite alphabet containing M symbols,
X =

{
x1, x2, . . . , xM

}
, and each xi is produced according to the probability P ε

X({xi}), 1 ≤ i ≤ M . If xi occurs
then the amount of information associated with the known occurrence of xi is defined by − log P ε

X({xi}).
Hence, the average amount of information per source output symbol, known as the average information, uncer-
tainty or entropy is

H(P ε
X) = −

M∑

i=1

P ε
X({x1}) log P ε

X({x1}), bits/symbol (4.36)

4.2.2. Entropy Rate Functional as a Measure of Information

Next, we shall introduce an entropy function defined with respect to the (max,plus) algebra and the rate functional
associated with the LDP.

Definition 4.3. Let
{(

X × Y,BX×Y , P ε
X,Y

)}

ε>0
∼ IX ,Y : X × Y → [−∞, 0].

The Entropy Rate Functional of any event Ox ∈ BX denoted by HX (Ox) is defined by

HX (Ox)
�
= lim

ε→0
ε log

1

P ε
X

(
X ∈ Ox

) = − sup
{

IX (x); x ∈ Ox

}
= −µX (Ox), Ox ∈ BX (4.37)
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According to the above definition the entropy rate functional stated in (4.37) enjoys analogous properties as the
entropy H(P ε

X), defined by (4.36). Suppose µX (A) = sup
{

IX (x); x ∈ Ox

}
, Ox ∈ BX is a (max,plus) measure

induced by a variable X taking values in the discrete space, X =
{
x1, x2, . . . , xM

}
, in which X models the

output of a discrete information source, producing symbols according to the (max,plus) law
{
IX ({xi})

}
. If

symbos xi occurs then the amount of information associated with the known occurrence of xi is defined by
−IX ({xi}) ≥ 0. Moreover, we have the following properies. i) The entropy rate functional is nonnegative,
HX (Ox) ≥ 0, ∀Ox ∈ BX , and equal to zero, HX (Ox) = 0, if and only if at least one IX ({xi}), is equal to
zero. Moreover, unlike the entropy function H(P ε

X) which can be negative for continuous R.V., the entropy
rate functional is never negative, because the rate functional IX : X → [−∞, 0]. ii) The entropy rate functional
HX (Ox) is a continuous function of the rate functional IX . iii) The entropy rate functional, HX (Ox), is a concave
function of the rate finctional, IX (x).

4.3. The LDP of Diffusion Processes
In this section we construct the action functional and a deterministic measure on cylinder sets of a Hilbert space.
This is a consequence of the Large Deviation principle applied to Brownian motion found in.22–24

Assumptions 4.4. f : �n → �, σ : �n → �n ⊗ �n are uniformly Lipschitz continuous, σ is bounded and
a(x)

�
= σ(x)σ′(x) is positive definite, that is, there exists an k ∈ [1,∞) such that

||f(x) − f(y)|| + ||σ(x) − σ(y)|| ≤ k||x − y||, ||σ(x)|| ≤ k, ∃λ > 0 
 σ(x)σ(x) ≥ λIn×n.

The LDP associated with diffusion processes is usually applied to the space
(
X ,BX

)
=

(
C0,T

�
= C([0, T ];�n),B0,T

�
=

B(C([0, T ];�n))
)
, which is a Banach space with the uniform norm || · ||C0,T . The diffusion process {Xε(t)} :

C0,T → C0,T is the unique solution of the stochastic Ito differential equation

dXε(t) = f(Xε(t))dt +
√

εσ(Xε(t))dw(t), 0 ≤ t ≤ T, Xε(0) = x ∈ �n, (4.38)

where validity of Assumption 4.4 is assumed. For a given bounded function f let {P ε}ε>0 denote the probability
measure induced by {Xε(t)} on

(
C0,T ,B0,T

)
. Then P ε = Wε ◦ Xε,−1 where Wε is the measure induced by

{√εw(t)} and Xε : C0,T → C0,T is defined by Xε = F ε(g), where Xε is the unique continuous solution of
Xε(t) = x +

∫ t

0
f(Xε(s))ds + gε(t).

Introduce the Hilbert space

H1
0,T = H1

(
[0, T ];�n

) �
=

{
φ ∈ C([0, T ];�n); φ(t) =

∫ t

0

φ̇(s)ds,

∫ T

0

||φ̇(s)||2�nds < ∞
}

(4.39)

which is the space of absolutely continuous functions with square-integrable derivatives.
Then

{(
C0,T ,B0,T , P ε

)}

ε>0
satisfies the LDP, which is an application of the contraction principle; the action

functional is given by

Ix,f
H1

0,T

(X) =
{ − 1

2

∫ T

0
||a− 1

2 (X(s))
(
Ẋ(s) − f(X(s))

)
||2�nds, X − x ∈ H1

0,T

−∞, X − x /∈ H1
0,T

(4.40)

Equivalently,

Ix,f
H1

0,T

(X) = Ix,0
H1

0,T

(w) =
{ − 1

2

∫ T

0 ||a− 1
2 (X(s))ẇ(s)||2�nds, w ∈ H1,w

0,T

−∞, w /∈ H1,w
0,T

(4.41)

where H1,w
0,T

�
=

{
w ∈ H1

0,T ; X(t) = x +
∫ t

0 f(X(s))ds +
∫ t

0 σ(X(s))ẇ(s)
}

.

Moreover, for any A0,t ∈ B0,t which is a continuity set of Ix,f
H1

0,T

(·) we have

µX (A0,t)
�
= lim

ε→0
log P ε(A0,t) = sup

{
Ix,f
H1

0,t

(X); X ∈ A0,t, X(0) = x
}

. (4.42)
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4.3.1. Connection to Thermodynamic Entropy

Next, for the class of systems described in Section 4.3, we employ Large Deviations to relate the Free Energy

log
∫

C0,T
e

∫
T

0
�(X)

dP ε(X) to the Macroscopic Thermodynamic Entropy S of Section 2.
Clearly, for any bounded and continuous function �, by the Laplace-Varadhan Theorem of Large Deviations22

we have

S(x)
�
= lim

ε→0
ε log

∫

C0,T

e

∫
T

0
�(X)

dP ε
x(X) = sup

w∈H1,w
0,T

{ ∫ T

0

(
�(X(s)) − 1

2
||a− 1

2 (X(s))ẇ(s)||2�n

)
ds

}
(4.43)

Here WR(x, ẇ)
�
= 1

2 ||a− 1
2 (x)ẇ||2�n − �(x) is the supply of energy into the system, and S(x) is a storage function.2

5. CONCLUSION

This paper establishes various connections between Robustness, Information Theory, Large Daviations and Sta-
tistical Mechanics for stochastic uncertain systems. Detail derivations and additional properties and connections
among these fields are found in.11, 19, 20
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