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Abstract: We exploit stimulated-Raman-scattering to generate polarisation-vortices over 4 Stokes shifts (53 THz) 
with a specially-designed optical fiber. This illustrates the possibility of generating these beams, of immense recent 
interest, at any wavelength that nonlinear processes in glass allow. 

 
Polarisation vortex beams (especially radially polarised light – see pattern in Fig. 1a) have recently attracted 

immense interest due to characteristics such as enhanced laser-machining efficiencies1, resistance to turbulence in 
free-space propagation2, and higher resolution for microscopy3, to name a few. Given the variety of applications, it 
would be desirable to have the means of generating them at the wavelength and power of choice. Current generation 
techniques primarily rely on a conventional laser beam converted into a vortex beam by means of a free-space 
component4,5, which limits the power or wavelengths at which they can be realised. In this paper, we demonstrate 
the possibility of generating vortex beams at a variety of desired colours by exploiting cascaded Raman scattering in 
a fiber that stably supports these beams. To the best of our knowledge, this represents the first demonstration of any 
nonlinear-optical interaction with polarisation vortex beams.  

The key enabler for our experiments is a specially designed fiber that allows signal propagation in vortex modes 
over lengths as large as 100 m – in contrast, previous attempts at generating these modes in fibers could not achieve 
more than a few cm of propagation in a fiber held rigidly straight6. Since this fiber allows long-distance propagation 
of a vortex beam, well-known fiber-nonlinear processes can then be used to manipulate them. In this paper, we 
exploit stimulated Raman scattering (SRS) to obtain radially polarised beams with high powers (Ppeak up to 470 W) 
and at a variety of wavelengths as far apart as 240 nm (53 THz) from the pump wavelength. This represents a shift 
of up to the 4th Stokes order of a 1064-nm pulsed pump source.  

The annular refractive index profile of this fiber, shown in Fig. 1b, enables stable, mode-coupling-free 
transmission of a selected polarisation vortex. This is because this design breaks the near-degeneracy of vortex 
modes (TM01, TE01 and HE21) in a conventional fiber, where the modes are usually separated in effective indices 
(neff) by ~10-6. In contrast, Fig. 1c shows that the neff of the desired radially polarised mode (TM01) is separated from 
the other states by more than 10-4. Note that this index separation is similar to that of PM fibers – hence we conclude 
that, once excited, this mode will propagate stably over long lengths (we observed no degradation of mode quality 
after even 100-m propagation).  The other important feature of this fiber is that this enhanced mode separation is 
maintained over several 100 nm, which suggests that any nonlinear-optical transformation of light in this mode will 
not diminish its inherent stability. 
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Fig. 1: (a) Mode intensity image of a radially polarised beam; (b) Annular refractive index profile of specialty fiber that breaks the degeneracy of 
vortex modes, (c) neff difference between desired radially polarised (TM01) mode and other vortex modes as a function of wavelength. 
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Details of the measurement setup are shown in Fig. 2a. A Nd:YAG laser (~10-ns Q-switched pulses at 1064 nm 
with 10 Hz rep. rate) serves as the input to the vortex fiber. A microbend-induced fiber grating (period ~ 500 µm) is 
used to convert the conventional input into a radially polarised beam. We independently measure that the conversion 
efficiency of this process is as high as ~99% at the input wavelength of 1064 nm. After 100-m fiber-propagation of 
the vortex mode, the output is collimated, and either sent directly to an OSA or power-meter, or wavelength 
separated, using bandpass filters at the fundamental (1064 nm), first (1115 nm) or second (1175 nm) Stokes shift, 
and then sent to a Si CCD camera to record images at different wavelengths. Fig. 2b shows the spectra of light from 
the output of the vortex fiber at various output power levels (labelled with both pulse energy and peak power). At 
the maximum energy level currently employed (4.7 µJ), we see up to the 4th order Stokes emission, roughly 240 nm 
away from the pump wavelength (53 THz shift). The insets in the plot of Fig. 2b show pure, doughnut-shaped mode 
images at the pump wavelength and all Stokes orders for a pump energy of 3.6 µJ. Thus, this confirms the central 
objective of these experiments – of nonlinear frequency generation in the desired mode as opposed to some random 
collection of multiple modes. 

In summary, we demonstrate nonlinear frequency generation of optical vortices (specifically polarisation 
vortices) via SRS in optical fibers. This provides crucial confirmation of the fact that a fiber that can stably 
propagate an optical vortex in the linear regime can also preserve its polarisation symmetry through nonlinear 
optical transformations. We show that powers as high as 470 W can be transmitted in polarisation vortex beams, and 
Raman stokes shifts up to 4th order were obtained. From a practical standpoint, this opens the door to generating 
optical vortices at a wide variety of wavelengths and over wide bandwidths, since fiber nonlinearities combined with 
dispersion control are especially versatile in this regard. This, in turn, promises to open new applications for these 
beams in areas that may need non-standard wavelengths and/or ultra-short pulses with wide bandwidths. 
                                                                                       
1 A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," Journal of Physics D 33, 1817, 2000 
2 W. Cheng et al, “Propagation of vector vortex beams through a turbulent atmosphere,” Optics Express, 17, p. 17829, 2009 
3 R. Dorn et al, “Shaper focus for a radially polarized light beam,” Physical Review Letters 91, 233901, 2003 
4 G. Machavariani et al, “Efficient extracavity generation of radially and azimuthally polarized beams,” Optics Letters 32, 1468, 2007 
5 M.A. Ahmed et al, “Radially polarized 3 kW beam from a CO2 laser with a intracavity resonant grating mirror,” Optics Letters 32, 1824, 2007 
6 S. Ramachandran et al, “Generation and propagation of radially polarized beams in optical fibers,” Optics Letters 16, 2525, 2009 
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Fig. 2: (a) Schematic of experimental setup. Microbend grating creates polarisation vortex at pump wavelength (1064nm), 
which is then propagated through 100-m of fiber to observe nonlinear frequency generation through stimulated Raman 
scattering; (b) Output spectra for different pump (1064-nm light) powers, and mode images at the fundamental (i – 1064nm), 1st 
stokes shift (ii – 1115 nm) and 2nd stokes shift (iii – 1175 nm) at Ppump ~ 3.6 µJ confirming Raman shifting in the desired 
polarisation vortex. 
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ABSTRACT: Lasing from population inversion in the mid-IR (3.1-3.2 μm) region was observed 
from a gas (acetylene) filled hollow core photonic crystal fiber when optically pumped at λ ~ 1.5 μm. 
Key words:  Molecular gas lasers, Fiber Lasers, Photonic crystal fibers 

1. INTRODUCTION 
Hollow core photonic crystal fibers (HC-PCF) have gained wide attention due to its ability to guide light in the hollow 
core with low attenuation over very long distances1. Many nonlinear optical phenomena, including the demonstration of 
a Raman laser2 has been observed in gas filled photonic crystal fibers. Here we report what we believe is the first 
demonstration of an optically pumped gas laser (OPGL) based on population inversion in a hollow core photonic crystal 
fiber (HC-PCF). With large possible stokes shift compared to atomic vapor lasers, OPGLs with molecular gases are 
attractive candidates for generating coherent radiation in the mid-infrared. In our experiment, we optically pump 
acetylene (C2H2) filled Kagome structured hollow core fiber with 1.5 �m nanosecond pulses from an optical parametric 
oscillator (OPO). Kagome fiber exhibits strong guiding in the near IR pump region (loss < 0.75 dB/m) and weak guiding 
behavior at about 3 µm (~20 dB/m), as calculations suggest. We observe laser emission in the mid-IR region at 
wavelengths of 3.12 �m and 3.16 �m. The laser combines the advantages of fiber lasers, such as the confinement of 
pump and laser light over long interaction lengths in a compact configuration, with those of gas lasers: high damage 
thresholds, a wide variety of possible (eye-safe) emission wavelengths in the atmospheric transmission window and the 
potential for coherent emission from mutually incoherent pump sources. The feasibility of implementing molecular 
OPGLs inside a waveguide has been previously examined3.   

2. SETUP FOR THE OPGL INSIDE HC-PCF 

In this initial demonstration of a fiber OPGL, ns pulses excite acetylene gas inside HC-PCF. This approach is motivated 
by an OPGL based on acetylene vapor inside a gas cell that demonstrated large optical gain near 3 �m4.  The layout of 
the optically pumped hollow core fiber gas laser is shown in Fig.1 (a).  

 

a) b)   

Fig. 1: a) Fiber OPGL setup.  The acetylene filled HC-PCF is pumped using a nanosecond OPO.  Suitable filters were used to 
separate laser emission from pump. b)  Spectrum of laser output when C2H2 pressure was ~7 torr and a simplified energy level 
diagram of C2H2 showing the pump and two laser transitions.     

A 1.65-m single-cell Kagome structured hollow core fiber was filled with C2H2 in a vacuum chamber. An optical 
parametric oscillator is used as the pulsed pump source, and its output pulses were typically 5 – 6 ns in duration with 
average pulse energies of ~ 5 mJ.  The OPO was tuned to resonance with the ν1 + ν3 (R7) transition in 12C2H2 at λ = 
1521.06 nm.  The gain of the laser is sufficient that no cavity was required, in spite of the large loss in the lasing band.   
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3. CHARACTERIZATION OF THE LASER OUTPUT 
Spectral output from the OPGL is shown in Fig. 1b for ~ 7 torr acetylene gas pressures. The laser emission shows two 
peaks at 3.12 �m and 3.16 �m. The OPO pump, tuned to the R(7) rotational transition, moves population from the J = 7 
rotational state of the ground state vibrational manifold to the J = 8 rotational state of the ν1 + ν3 vibrational state creating 
a population inversion between J = 8, ν1 + ν3 state and the essentially empty ν1 vibrational state. This result in the lasing 
transition from the J = 8, ν1 + ν3 state to the allowed rotational states of ν1 vibrational state.  Using the known molecular 
constants for the ν1 and ν1 + ν3 states5, the two peaks are identified as the R(7) and P(9) transitions originating from pump 
level of the ν1 + ν3 vibrational state and terminate at the J = 7 and J = 9 of the ν1 vibrational state. Pulsed laser output was 
observed for gas pressures between 0.5 torr and 20 torr. 

Figure 2(a) shows the laser pulse energy output as a function of pump pulse energy for an acetylene pressure of 7 
torr.  This curve indicates the onset of saturation as the increasing pump pulse energy starts to saturate the absorption 
transition.  At lower pressures, saturation is more pronounced. Figure 2(b) shows the lasing output as a function of 
acetylene pressure for pump energies of 600 nJ coupled into the fiber (30 �J incident on the fiber).  The coupling 
efficiency was only ~2%, but values exceeding 50% into Kagome fiber have been demonstrated.  The measured 
temporal delay between the pump and laser pulses showed shorter delays when the pump power is further above 
threshold when population inversion builds up more quickly.  The lasing threshold, defined as the minimum pump pulse 
energy coupled into the fiber necessary to observe mid-IR laser output, is about 200 nJ, and varies with pressure.  The 
slope efficiency of the laser, defined as the change in output energy divided by the change in pump energy coupled into 
the fiber, is a few percent. 

a)  b)  
Fig. 2: a) Laser pulse output energy vs. pump pulse energy in relative units, for 7 torr pressure acetylene gas.  b) Mid-IR laser output power 
vs. acetylene pressure when pumped at 30 �J incident input pulse energy for several acetylene pressures inside the HC-PCF.   

The reduction of the Kagome fiber losses at the laser wavelength should substantially increase the slope efficiency and 
decrease the threshold.  Furthermore, the addition of an optical cavity or increased Kagome fiber length may also 
improve laser performance. While this first demonstration uses a pulsed pump, the gas-filled fiber laser is particularly 
attractive for pumping with continuous wave laser sources.   
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Coherent Combination of a 1.26-kW Fiber Amplifier 
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Abstract:  A 1.26-kW, multi-stage Yb fiber MOPA was coherently combined using active polarization and 
phase control with 94% visibility to a second fiber amplifier, consistent with estimated decoherence effects 
from fiber nonlinearity, linewidth, and phasing accuracy. 
 

1. Introduction:  Actively phase-locked coherent beam combining (CBC) of high power lasers provides a method 
for parallel scaling of laser brightness past the limits of any single laser element [1].  In this method, a master 
oscillator (MO) seeds an array of power amplifiers (PAs) whose outputs are locked in phase using active feedback 
and combined to form a single high-brightness beam.  This MOPA architecture was employed to combine seven 
Nd:YAG slab amplifier chains  into a composite 105 kW [2].  While this represents a significant achievement in 
laser power scaling, a CBC array of Yb-doped fiber amplifiers (YDFAs) offers potential for improved performance. 

The primary concern for CBC with high power YDFAs is preserving the coherence properties of the MO to 
allow fully constructive interference of the amplified outputs.  High power, single mode (SM) fiber lasers exhibit 
significant nonlinear responses.  While 10 kW output has been demonstrated from a near-SM fiber [3], its spectrum 
spans tens of nm owing to nonlinear broadening, preventing its use as an amplifier in a CBC array.  Actively phase-
locked CBC of fiber lasers is implemented either with a single-frequency (SF) MO, which has been limited to ~150 
W per fiber due to stimulated Brillouin scattering (SBS), or with controlled linewidth broadening to suppress SBS 
[4].  10-GHz class, linewidth-broadened SM YDFAs have recently been demonstrated at kW-class powers [5,6]. 

In this work, we integrated a phase-modulated 21-GHz linewidth, 1.26-kW YDFA chain with active phase and 
polarization control to demonstrate combining with over 94% mutual coherence to a second, parallel fiber amplifier.  
This represents an increase of nearly an order of magnitude in power for active phase-locking of a fiber amplifier 
over previously reported work [4] and shows that decoherence effects from active phase control, fiber nonlinearities, 
and coherence length are manageable at these power levels.   
2. Experimental Configuration:  A schematic of the combining experiment is shown in Fig 1.  A SF fiber MO (NP 
Photonics) operating at a wavelength � = 1064 nm is phase-modulated using a waveguide electro-optic modulator 
(EOM) to 21 GHz FWHM linewidth for SBS suppression.  Following the EOM, the output is amplified to ~100 mW 
and split into three channels, one of which is frequency-shifted by a 55-MHz acousto-optic modulator to serve as a 
heterodyne reference for phase metrology.  Each of the other two channels contains an EOM for piston phase 
control, a variable delay line (VDL) for path equalization, and gain-staged YDFAs.  The low power channel 
contains two polarization-maintaining (PM) pre-amplifiers to provide ~1 W output power.  The high power channel 
contains a 12-dB PER fiber polarization controller (General Photonics, POS-104) followed by a recently developed 
3-stage, non-PM YDFA chain (IPG Photonics) to boost power to 1.26 kW.  The final power amplifier of this YDFA 
is pumped by 1018 nm fiber lasers and has been described in [6]. The amplified spectrum is identical to the seed. 
 

 
The outputs from both fiber amplifier channels are collimated and tiled side-by-side.  The high power beam is 

attenuated for amplitude equalization with the low power beam and polarization-filtered to provide a feedback signal 
for the polarization controller.  The frequency-shifted reference is combined with the 2x1 tiled beam.  Separate 
photodetectors in each channel sense the phase of the 55-MHz beat notes to provide error signals for phase-locking 
of each beam to the reference with fidelity of  �/80 RMS [7].  Tolerance stack-up of uncorrelated errors means that 
the beam-to-beam phasing errors are ��  = 21/2(�/80) = 0.11 rad.  A low-power sample of the tiled beam is focused 
onto a far field camera to generate a stationary fringe pattern.   A narrow slit whose width is ~5% of a fringe period 

  Fig. 1.  Schematic of fiber CBC experiment.  Fringe visibility of the combined outputs indicates mutual coherence and combining efficiency.  

xxxv



provides a metric for mutual coherence between the two beams through the visibility V = (Imax – Imin)/(Imax + Imin).  
Imax and Imin are, respectively, the transmitted intensities through the slit at a peak and a null of the far-field 
interference pattern, measured sequentially by applying a �–phase shift to the phase controller for one channel.  
With proper amplitude equalization between the two phase-locked channels, V is equivalent to the mutual coherence 
between the two beams and is representative of the coherent combining efficiency for co-aligned beams.  

 
 

3. Results and discussion:  Fig 2 shows the measured mutual coherence V of the combined phase-locked beam as a 
function of output power from the high power amplifier channel.  Over 94% mutual coherence was measured at the 
full 1.26 kW output power.  This measurement encompasses all physical decoherence effects that could limit 
combining efficiency, including path mismatch, beam jitter, mode dynamics, amplitude noise, nonlinear phase shifts 
or spectral distortion, amplified stimulated emission (ASE), and SBS.  The low power coherence agrees with the 
expected limit based on the accuracy of active phase control [8], 1 – �� 2 = 1 – (0.11 rad)2 = 0.988. 

Much of the coherence drop with increasing power can be attributed to power-dependent nonlinear phase noise 
��NL arising from self-phase modulation (SPM) in the fiber [9].  Fluctuations �P in amplified output power P induce 
a nonlinear phase shift ��NL = (d�NL/dP )�P, where d�NL/dP = 2�n2(Leff /Aeff)/�, Leff and Aeff are the effective power-
weighted fiber length and mode field area, respectively, and n2 is the nonlinear index for silica fiber.  Any RMS 
power noise �P faster than the ~10 kHz closed loop phase control bandwidth [7] will result in SPM that will be 
uncorrected and will contribute to decoherence and a drop in V:  V(�P) = V(0)[1 – (d�NL/dP)2 ·�P2/2].  The 
differential shift was measured d�NL/dP = (1.07 ± 0.15 rad)/(114 ± 10 W) = 9.4 ± 1.7 rad/kW.  Based on measured 
power fluctuations �P/P, the predicted values agree with the observed decoherence up to 1.1 kW (Fig 2). 

Owing to the relatively broad 21-GHz linewidth, optical path lengths in each YDFA must be equalized to within 
a small fraction of the coherence length to prevent significant combining loss due to decoherence [9].  Fig 3 shows 
the measured drop in V as the path length is adjusted, and agrees with the calculated coherence function.  A key 
question for practical operation of a large array of kW-class fibers is whether the change in fiber path due to thermal 
expansion and index changes upon turn-on will result in significant decoherence.   The measured path change at 
1.26 kW is ~1.5 mm, suggesting combining losses owing to coherence length issues can be kept below 1% with 
modest attention to amplifier thermal responses.  
 4. Conclusions and future directions: The demonstration of  >94% visibility coherent combination of a 21-GHz, 
1.26-kW YDFA opens the door to integration of such fibers in large CBC arrays.  There appears to be room for 
further YDFA power scaling by changing the pumping scheme from 1018-nm fibers to 980-nm diodes [5,6], which 
should enable shortening the fiber length and reducing the fiber nonlinearity.  Implementation of active path length 
controls seems likely to enable CBC of fibers with linewidths substantially broader than 21 GHz. 
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Fig. 3.  Loss of visibility (decoherence) due to 21-GHz linewidth and 
path mismatch between fiber channels. 
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Fig. 2.  Measured and predicted coherent visibility V due to self-phase 
modulation arising from output power fluctuations.   
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The Tm:fiber laser is a promising source of high-power, eyesafer, 2000-nm power. 
Starting in 1998, the power output and efficiency of double-clad, Tm-doped fibers have 
both steadily risen. In published work, we have previously reported a total of 885 W of 
multimode power from two ends of a free-space-pumped, multimode Tm:silica fiber laser, 
with 50% optical-optical efficiency. Northrop Grumman, also using free-space pumping, 
has reported 608 W of single-mode, single-frequency power. 
 
While free-space pumping provides a convenient scheme for scaling studies, the need to 
maintain a critical mechanical alignment of the pump power into the cladding limits use 
outside of a laboratory environment. In terms of all-glass Tm:fiber systems, where the 
pump light is delivered to the cladding through all-fiber-based couplers, the highest 
reported power until now was 415 W, in an IPG fiber-laser-pumped system with 
Yb,Er:fiber pump sources. 
 
Here we report a >1 kW, all-glass, Tm:silica fiber laser MOPA system, with the amplifier 
pumped by twelve, fiber-coupled 792-nm diode sources. In initial work with the all-glass 
design, we obtained 503 W at 2045 nm, with a 50-W oscillator and a co-pumped 
amplifier consisting of 10 m of 20 (0.1 NA)/400 (0.46 NA) �m double-clad fiber driven 
by six diode pumps connected to a 6+1:1 pump coupler. The amplifier optical slope 
efficiency was 61%. To scale to higher powers, we lengthened the active fiber to 12 m, 
added a cladding stripper, another co-pumping coupler and 12 m of 20/400 active fiber to 
output end of the first amplifier fiber. With the added power of six more pump diodes, we 
obtained 1053 W of power, with an overall optical slope efficiency of 53%. Given past 
results with the same fiber, we expect the output to be single mode, and we are in the 
process of verifying this at the full power level. 
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ABSTRACT 

An all-fiber optical Faraday isolator is demonstrated. It consists of two fiber polarizers and a fiber Faraday 
rotator, which is made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of 
the terbium-doped fiber was measured to be 32.1�0.8 rad/(Tm), which is 27� larger than that of silica fiber. 
This effective Verdet constant is 83% of the Verdet constant of commercially available crystal (TGG) used in 
bulk optics–based isolators and 61% larger than previously reported values. The fiber polarizers are Helica-
in-Fiber Polarizers (Chiral Photonics). The isolation of this fully fusion spliced all-fiber isolator is measured 
to be 19 dB. 
Keywords: Faraday isolator, terbium-doped fiber, effective Verdet constant 

1. INTRODUCTION  
Optical isolators are important components in optical communication networks and laser systems. Although all-fiber 
optical isolators are preferred for high-power applications, current isolators are based on bulk optics. The small Verdet 
constant [~1.1 rad/(Tm) at 1060 nm] of silica fiber is the bottleneck to realizing all-fiber Faraday isolators. In this paper, 
we report on the demonstration of a compact all-fiber Faraday isolator.  

2. TERBIUM-DOPED FIBER 
Terbium doping is an effective way to increase the Verdet constant in a fiber. Highly terbium doped silicate glasses have 
been designed and fabricated. Boron oxide and aluminum oxide were added into the glass composition to improve the 
solubility of terbium oxide. A 65-wt%-terbium-oxide–doped glass was used as the core glass. The rod-in-tube technique 
was used for single-mode fiber fabrication. The fiber-pulling temperature was around 1000�C. The numerical aperture 
and diameter of the core were 0.083 and 7.4 �m, respectively, and the cladding diameter of the fiber was 125 �m. The 
propagation loss of the fiber was measured to be 0.024 dB/cm at 1310 nm using the cut-back technique. The fiber was 
fabricated at AdValue Photonics using an in-house fiber drawing tower. 

Using the measurement technique described in Ref. 1, Fig. 1 shows the measured rotation angle and the corresponding 
curve fit at the 1053-nm measurement wavelength as the magnet was translated along the length of the fiber. The 
maximum rotation angle reached 45�C. The error in the measured angle was primarily caused by air flow and it was 
determined to be 1� by a polarization-stability measurement. The effective Verdet constant was determined to be  
–32.1�0.8 rad/(Tm), which is 27� larger than that of silica fiber. This effective Verdet constant is 83% of the Verdet 
constant of commercially available crystal (TGG) used in bulk optics–based isolators and 61% larger than previously 
reported values.2 

3. EXPERIMENT 
The experimental configuration is shown in Fig. 2. A 4-cm section of Tb-doped fiber, spliced between two 15-cm 
sections of single-mode (SM) fiber, went through a magnet tube. The N48 NdFeB magnet tube (residual flux density Br 
= 0.95 T) was 4 cm long with inner and outer diameters of 5 mm and 6 cm, respectively. The two other ends of the SM 
fibers were each spliced to a fiber polarizer. The fiber polarizers were Helica In-Fiber Polarizers (Chiral Photonics),3 
which consist of 4-cm-long chiral scattering grating (CSG) with polarization-maintaining (PM) fiber pigtails at both 
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ends. The polarization directions of the two fiber polarizers were aligned with a rotational difference of 45�. The optical 
isolation at 1053 nm was measured to be 19 dB. 
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Figure 1. Measured rotation angle (stars) 
and corresponding curve fit (solid) at a 
1053-nm wavelength as a function of the 
magnet’s location along the fiber’s z axis. 
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Figure 2. Experimental configuration 
of the all-fiber Faraday isolator. 

4. CONCLUSION 
In conclusion, an all-fiber optical Faraday isolator is demonstrated. It consists of two fiber polarizers and a fiber Faraday 
rotator, which is made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of the 
terbium-doped fiber was measured to be 32.1�0.8rad/(Tm), which is 27� larger than that of silica fiber. This effective 
Verdet constant is 83% of the Verdet constant of commercially available crystal (TGG) used in bulk optics–based 
isolators and 61% larger than previously reported values. The fiber polarizers are Helica In-Fiber Polarizers (Chiral 
Photonics). The isolation of this fully fusion-spliced all-fiber isolator was measured to be 19 dB. 
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