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ABSTRACT   

Computer-Integrated Interventional Medicine (CIIM) promises to have a profound impact on health care in the next 20 
years, much as and for many of the same reasons that the marriage of computers and information processing methods 
with other technology have had on manufacturing, transportation, and other sectors of our society. Our basic premise is 
that the steps of creating patient-specific computational models, using these models for planning, registering the models 
and plans with the actual patient in the operating room, and using this information with appropriate technology to assist 
in carrying out and monitoring the intervention are best viewed as part of a complete patient-specific intervention 
process that occurs over many time scales.  Further, the information generated in computer-integrated interventions can 
be captured and analyzed statistically to improve treatment processes.   This paper will explore these themes briefly, 
using examples drawn from our work at the Engineering Research Center for Computer-Integrated Surgical Systems and 
Technology (CISST ERC). 
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1. INTRODUCTION  
 

Computer-Integrated Interventional Medicine (CIIM) promises to have a profound impact on health care in the next 20 
years, much as and for many of the same reasons that the marriage of computers and information processing methods 
with other technology have affected manufacturing, transportation, and other sectors of our society. Our basic premise is 
that the steps of creating patient-specific computational models, using these models for planning, registering the models 
and plans with the actual patient in the operating room, and using this information with appropriate technology to assist 
in carrying out and monitoring the intervention are best viewed as part of a complete patient-specific intervention 
process that occurs over many time scales.  Further, the information generated in computer-integrated interventions can 
be captured and analyzed statistically to improve treatment processes.    

Figure 1 illustrates the information flow in CIIM systems.  We view interventional medicine as a closed-loop process. 
CIIM systems rely on the ability of computers to store, analyze, and retrieve a great deal of pertinent information about 
the patient.  Much of this information is typically in the form of medical images, but may include other clinical data as 
well.  In addition, there is typically a good bit of information about humans in general (e.g., in the form of statistical 
models of anatomy), treatment options, and the like.  The key step is to combine all of this information into a patient-
specific model that makes it available to the computational processes involved in the remaining process steps.  This 
representation may then be used to help the human clinician diagnose the patient and formulate a treatment plan, which 
may involve surgery, radiation therapy, or some other intervention.  The next step is crucial.   The pertinent preoperative 
models, plans, and other information may be is brought into the operating room or intervention suite.  It then is 
registered to the actual patient, typically after additional images or other sensory data are acquired.  Once this process 
has occurred, a variety of appropriate technologies may be used to assist the surgeon in carrying out the planned 
intervention and to monitor the process of the procedure.  This basic patient-specific information loop is actually carried 
out at multiple time scales, ranging from the entire treatment cycle to minute-by-minute or second-by-second actions 
within the operating room. 

These information-driven interventions have several important properties beyond their direct benefits for individual 
patients.  The first is obvious: they generate a very large amount of patient-specific data at each step in the process.  
Currently, much or most of this information is  discarded at the end of the procedure or never captured in the first place.  
However, it is certainly within the capability of modern computing systems to retain and index all potentially pertinent 
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information about each procedure.  The system can function as its own “flight data recorder”.  Second, procedures 
executed with computer assistance are often more precise and more consistent than those relying only on unaided human 
execution.  Eventually, the outcome for the patient is known.  In a way analogous to what has happened in computer-
integrated manufacturing, it should eventually be possible to use this data, combined with powerful statistical and data 
mining methods, to improved treatment outcomes, in much the same way that computer-integrated techniques have 
improved the quality and efficiency of industrial production. 

There is an extensive literature concerning each of these steps and (indeed) of steps toward integrating them.  A 
thorough survey of this literature is beyond the scope of this short paper. Rather than attempt it, I would like to discuss 
each of the key concepts briefly and to illustrate the discussion with examples taken from our work at the Engineering 
Research Center for Computer-Integrated Surgical Systems and Technology (CISST ERC).  More thorough surveys of 
medical robotics and interventional systems may be found in some of my published survey paperse.g.,1-6 or those by other 
authors. 

2. PATIENT-SPECIFIC CLOSED-LOOP INTERVENTIONAL MEDICINE 
2.1  Patient-specific Modeling 

The goal of patient-specific modeling is the construction of a computationally efficient representation of the patient, i.e., 
one that enables the computer to assist in planning, guidance, control, and assessment of interventional procedures. 
Computational efficiency is important, since these models will be used intraoperatively or (during planning) interactively 
with humans.  For surgery and other interventional procedures, the main focus is typically on constructing models of 
anatomic structures based on medical images, although there is increasing interest in incorporating other forms of 
information as well. 

 
Figure 1: Closed-Loop Interventional Medicine: We view medical interventions as closed-loop 
processes occurring at multiple time scales.  The basic process involves the steps of patient-specific 
modeling, planning, registering plans and models to the actual patient, using this information with robots 
and other appropriate technology to perform the intervention and assess or monitor the results.  Further, 
the information from many patients may be saved and analyzed statistically to improve treatment plans 
and processes.   
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Figure 2A illustrates one prevalent and pertinent theme in medical image-based modeling and analysis: the construction 
of patient-specific models by combining current patient-specific images with prior information in the form of earlier 
patient-specific images or statistical models of patient populations.  This has long been a theme of research here at Johns 
Hopkinse.g., 7-16, as it has elsewhere around the world. Figure 2B shows an example involving fusion of a segmented 
preoperative model of a kidney and tumor with intraoperative stereo video for a laparoscopic partial nephrectomy 
procedure7.  In other work16, 17, we have also been investigating the fusion of preoperative CT models with intraoperative 
ultrasound elastography and video for the same procedure.  

Figure 2C illustrates the fusion of statistical models, partial preoperative CT scans, and preoperative x-rays to create 
patient-specific models of the pelvis for planning periacetabular osteotomies8.  Here, the goal was to reduce the amount 
of x-ray exposure to the pelvic area while still providing a sufficiently accurate model for osteotomy planning.  

2.2 Procedure Planning 

Planning is pervasive in CIIM systems and applications and it occurs at many time scales, ranging from preoperative 
plans made days or hours before the procedure to intraoperative decisions made minutes or seconds before they are 
carried out.  Several emerging themes include increasing use of statistical methods to suggest plans, based on experience 
with similar patients (see, e.g., Section 3).  Another is the increasing potential to perform significant intraoperative 
computation to assist dynamic replanning in the operating room.  One example of this is recent work by Armand et al. 
on intraoperative osteotomy replanning18-20. 

 
Figure 2: Combining prior information with additional images for patient-specific modeling.  A) 
Overall concept; B) Fusing preoperative CT with intraoperative video for video overlays7; C) Fusing 
statistical shape models with partial preoperative CT images and preoperative x-rays for osteotomy 
planning8. 

Prior images & 
models 
(mostly  
  3D) 

New Images  
(2D, 3D) 

Prior statistical  
information 
(atlas) 

Computational 
process 

• Segmentation 
• Registration 
• Hybrid 

reconstruction 

Patient-specific 
model 

Applications 

•  Intervention planning 
•  Intervention guidance & 

visualization 
• Biomechanical analysis 

Video: JH Yao, 2002 

A 

B C 

Stereo Video 

Preoperative CT 
 + 
Surgical plan data 

Computational 
process 

Reconstruct 
surface from 
video 

Register 
surface  to 
preoperative 
model and 
resection plan 

Visualization 

Partial CT Scan 

2 X-ray Images 

Prior statistical  
information 
(atlas) 

Computational 
process 

Patient-specific 
model 

Hip Osteotomy 
• Biomechanical analysis 
•  Intraoperative registration 

2D/3D Registration 

Atlas Extrapolation 

https://ciis.lcsr.jhu.edu/dokuwiki/doku.php?id=research.prior_knowledge 

Proc. of SPIE Vol. 8316  83160D-3



 
 

 
 

2.3 Procedure Execution 

Once models and plans have been generated and registered to the actual patient, a number of appropriate technologies 
may be used to assist in carrying out the plan.  The choice depends to a great extent on the requirements of the specific 
procedure and of the specific barriers to be overcome.  A good general principle is that simple is better.  Any 
intraoperative system must offer significant and concrete advantages that translate into real clinical benefit.  These 
advantages might include such things as reduced invasiveness, lower morbidity, improved precision and efficacy, greater 
safety, reduced radiation exposure, shorter operating times, or other factors associated with outcomes or cost.  The 
advantages must outweigh the cost and complexity associated with the system. 

For these reasons, simple information assists or intraoperative decision supports such as surgical navigation systemse.g.,23, 

24  are often highly effective and preferred.   Recent research in these systems has focused on integration of increasingly 
sophisticated intraoperative imaging, registration, and visualization schemes to provide feedback to the surgeon. Figure 
2B and Figure 10B provide examples of the use of information overlays in interactive surgery.  Another example is 
recent work by Hager et al. e.g.,25, 26 to perform direct registration of intraoperative video to preoperative models in ENT 
and neurosurgery procedures. This work has been further extended by Uneri, Siewerdsen, et al.27 to include co-registered 
intraoperative x-rays and cone-beam CT reconstructions, combined with video overlays.  There is also significant 
interest both at Johns Hopkins and elsewhere in providing a direct “augmented reality” visualization of image and model 
data onto the patient’s anatomy, and several approaches are being pursued.  One approach that has been successfully 
used within the CISST ERC uses a simple semi-transparent mirror to superimpose a cross-sectional image from a CT or 
MRI based intervention plan onto the actual patient28-30.   

However, robotic devices do offer many advantages in applications requiring precision, reduced invasiveness, or the 
ability to work in certain imaging environments.  On a personal basis, my introduction to CIIM came while I was still at 
IBM, with the development of the “Robodoc” system for joint replacement surgery31, 32 followed by development of the 
LARS endoscope manipulation system33. Within the CISST ERC, we have had considerable experience with a wide 
variety of systems designed for such applications.  One class is systems designed to place needles accurately on 
anatomic targets under image guidance.e.g., 30, 34-42.  One characteristic of these systems is that they do not so much place 
the needle as aim it. The needle tends to deflect when inserted into solid tissue.  Work begun within the ERC by 
Okamura et al. is addressing this difficulty by developing methods to steer the needle by rotating it as it is inserted into 
tissue.43   

 
 
Figure 3: High stiffness steerable cannula end effector with large lumen.46  Left) End-on view 
showing cable channels in 6 mm nitinol  cannula with 4 mm lumen.  Right) Frame from video showing 
motion of the device through a simulated osteolytic lesion.  (Images: Mike Kutzer, JHU APL) 

https://ciis.lcsr.jhu.edu/dokuwiki/doku.php?id=research 

Proc. of SPIE Vol. 8316  83160D-4



 
 

 
 

One advantage offered by robots is the ability to provide high dexterity, precise motion within confined spaces inside the 
patient’s body.  Maintaining high strength and manufacturability of high dexterity mechanisms while simultaneously 
making them smaller and smaller can present many design challenges.  Researchers at JHU and elsewhere have begun to 
explore alternative design approaches that rely on flexible structures, rather than more traditional jointed mechanisms.  
Examples from the CISST ERC include the “active cannula” designs44 explored by Webster et al. at Johns Hopkins and 
subsequently at Vanderbilt, the “snake” systems (Figure 10(C,D), below) developed first by Simaan, Taylor et al. at 
Johns Hopkins and subsequently at Columbia and Vanderbilt,45 and high stiffness steerable cannulas (Figure 3) 
developed  at Johns Hopkins in partnership with the Johns Hopkins Applied Physics Lab.46 

Telerobotic systems such at Intuitive Surgical’s da Vinci robote.g.,47-49 have become widespread in the past few years. 
These systems offer many technical advantages to the surgeon, including improved visualization, reduced tremor, and 
the ability to perform high dexterity surgical maneuvers inside the patient’s body.  Currently, these systems are used in a 
purely telesurgical mode.  The surgeon observes stereoscopic video while manipulating a pair of master control handles, 
while the robot follows the surgeon’s hand motion.  One major focus of research within our Center has been 
investigation of methods to go beyond this paradigm by exploiting the fact that we have essentially put a computer 
between the surgeon and the patient, as illustrated in Figure 4A.  Figure 2B showed one example of fusing preoperative 
information with the surgeon’s view of the patient anatomy.  Figure 4B shows an example in which the computer shares 
control of a robot with the surgeon.  Within the CISST ERC, there has been considerable research led by Boctor et al. on 
advanced intraoperative ultrasound methods such as elastography.e.g.,16, 50, 51  Similarly, we have had an active 
collaboration with Intuitive Surgical to integrate ultrasound capabilities with the da Vinci system.52, 53 In Figure 4B, the 
surgeon guides the probe over the surface of an organ (here, a phantom) while the robot superimposes a regular 
palpation motion to facilitate formation of the elastography images. Figure 4C shows other recent research by Padoy and 
Hager to develop semi-automated behaviors, in which the computer and the human surgeon trade off control of the robot 

 
Figure 4: Augmented teleoperation and human-machine cooperation with the DaVinci© surgical 
system.  A) basic concept; B) robot assisted elastography to locate lesions21; C) semi-automated surgical 
gestures22.  Note that the capabilities in B & C are experimental and not for clinical use. 
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at different stages during execution of a surgical maneuver22. 

Medical robots are often only one component is a complete intraoperative system. Figure 5 shows a system for retinal 
microsurgery that we have been developing in cooperation with retinal surgeons at Johns Hopkins’ Wilmer Eye 
Institute.54   The heart of the system is a computer workstation interfaced to a video surgical microscope, together with 
robotic devices55, 56, “smart” surgical tools capable of sensing tool-to-tissue forces57, 58 and “A-mode” spectral-domain 
OCT59, 60, a programmable multi-spectral light source for reducing light toxicity.61, 62 The system provides a number of 
human-machine interfaces and capabilities including the ability to track the retina63 and tools64, 65, provide video overlays 
of tracked annotations and other displays66, generate auditory signals corresponding to force, tool-tissue proximity, and 
other data67, and integrate force, OCT, vision, and human-input to develop various forms of assistive behaviors for the 
robots.55, 66-68 The robot shown in Figure 5 uses what we call “steady-hand” cooperative control, in which the surgeon 
and the robot both hold the surgical instrument.  The robot senses forces exerted by the surgeon on the tool and moves to 
comply.  Since the robot is doing the actual moving, there is no hand-tremor and the control can be modified to provide a 
variety of “virtual fixtures” and semi-autonomous behaviors.   

Our technical approach for virtual fixtures and surgical robot control (illustrated in Figure 6) is based on the constrained 
optimization framework originally proposed by Funda and Taylor69 and subsequently extended to support a library of 
virtual fixture primitives.70, 71  Briefly, we formulate the motion control of the robot as a quadratic optimization problem, 
in which constraints and optimization criteria are combined from multiple sources. These include: i) joint limits and 
other robot kinematic constraints; ii) surgeon commands from a master hand controller; iii) real vision or other sensor 

 
Figure 5: Microsurgery Assistant Workstation.  Left) Architecture; Right) System in our 
laboratory 
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Figure 6: Optimization-based virtual fixtures.  Left) Basic control paradigm; Right) information flow 
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data; iv) descriptions of desired behavior built up from simple primitives; and v) registered anatomic models of the 
patient.  We solve these problems at interactive rates (typically, from 20 Hz to 200 Hz, depending on problem size) and 
applied this formulation to teleoperation of complex robots such as laparoscopic robotse.g., 33, 69, 72-74, snake-like robots45, 

74, 75, microsurgical robotse.g., 76-81, assistance in tasks such as suturing, implementation of safety regions in surgerye.h., 70, 

71, 75, 80-82, and alignment aids in targeting tasks.e.g., 33, 83-85 

2.4 Procedure Monitoring and Assessment 

Many of the same technologies used for preoperative modeling, intraoperative guidance and registration may also be 
used to monitor the progress of the procedure or to assess its results.  A few recent examples from the CISST ERC 
include the use of intraoperative ultrasound elastography to monitor RF ablation of tumors51, intraoperative x-rays co-
registered to trans-rectal ultrasound for assessment of prostate brachytherapy seed placemente.g.,88, 89, and the use of 2D 

 
Figure 8: Elastography assessment of RF ablation of liver using an active cannula robot.90 

Figure credit: Emad Boctor and Pezhman Foroughi 

 
Figure 7: Procedure monitoring and assessment: (Left) Reconstruction of injected cement in 
femoroplasty from sparse set of intraoperative x-rays86; (Right) Reconstruction of tunnel positions in 
ACL repair surgery from a preoperative model and uncalibrated postoperative x-rays87.  
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and 3D intraoperative x-rays to assess orthopaedic procedures.  Figure 7(Left) shows reconstruction of injected cement 
in femoroplasty from four intraoperative x-ray using a novel deformable level-set method86, comparing the result with a 
ground truth obtained from segmented CT of the femur and the results from simple intersection of segmented 2D 
images. Figure 7(Right) shows the use of registration of uncalibrated postoperative x-rays to a prior 3D model to assess 
tunnel position in anterior cruciate ligament (ACL) repair surgery. 87 The prior model may be a patient-specific model 
derived from a CT or MRI scan, but such preoperative images are typically not obtained.   Therefore, the eventual goal 
of this ongoing research is to perform a deformable registration to a statistical shape model of the knee, as discussed in 
Section 2.1.  In addition to providing a means for 3D assessment of an individual patient’s procedure, this approach will 
also make possible longer-term retrospective statistical studies.  

Often the feedback used for monitoring or assessment is combined with other technology.  For example, Figure 8 shows 
recent work at Johns Hopkins to incorporate ultrasound elastography into an “active cannula” robot44 for ablation of liver 
tumors.90  The system uses the robot both for ablation delivery and palpation. The B-mode, displacement map, and strain 
image of the ablated liver tissue are shown. Tissue motion is maximal around the needle and lessens as the distance from 
the needle increases. The strain shows the hard lesion created by ablation. 

3. EXPERIENCE-BASED CIIM 
As was discussed earlier, one of the most important aspects of CIIM systems is their potential to generate data that may 
be saved and analyzed using statistical methods to improve treatment plans and processes.  As clinical databases are 
made more suitable for enabling research as well as for managing individual patients, we may expect to see more and 
more examples of their use in this way.  One example is the “Oncospace” project in the Johns Hopkins Radiation 
Oncology Department.  The goal of this project is creation of a system and infrastructure that allows clinical data and 
radiation treatment plans to be collected in a well-structured way during routine clinical practice with minimal impact on 
normal clinical workflow.  One example application is illustrated in Figure 9.  Here the goal is to use a database of 
previously treated patients to improve the quality and efficiency of intensity modulated radiation therapy (IMRT) 
planning for new patients.  In current practice, IMRT planning is done as an iterative process involving cooperation 
between an expert dosimetrist and a computer.  Starting with a model of the target tumor and surrounding critical 
structures, the dosimetrist sets up a series of optimization problems for the computer, which solves them and simulates 

 
Figure 9: Experience-based radiation therapy planning91-99. 
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the resulting plans.  Based on the results, the dosimetrist then proposes further optimization problems until a satisfactory 
clinical plan is achieved.  The process is tedious and (further) may not always produce the best possible plan, since it is 
not always clear when to stop.  Our approach91-99 uses a novel descriptor, which we call the “overlap volume histogram 
(OVH)” derived from the relative configuration of the tumor and surrounding structures to enable us to retrieve patients 
posing similar planning difficulty from a data base of prior treatment plans92, 95, 100.  The retrieved information may be 
used either as a quality control measure to help evaluate a manually generated plan or as a starting point for planning.  
Early results for this approach for head-and-neck tumors91, 93, 94, 97, 101 have been very encouraging, and we are beginning 
to extend the method to other parts of the body.96, 99 

4. SYSTEMS APPROACHS AND ENABLING ENVIRONMENTS 
CIIM systems are systems that must necessarily integrate many components.  Both research and practical deployment 
require that improvements in individual component technologies must often be tested within the context of an overall 
system or application.  Consequently, the development of standardized, modular interfaces and application development 
frameworks is a necessary element in our strategy.  Open interfaces and open-source software is especially important for 
the CIIM research community, and there have been a number of recent workshops e.g., 102-104 intended to promote greater 
sharing and interoperability of research software systems for CIIM.  Examples include open source packages such as 
BWH’s 3D Slicer (http://www.slicer.org), the VTK (http://www.vtk.org) and ITK toolkits (http://www.itk.org), and the 
CISST ERC’s CISST/SAW libraries and infrastructure (https://trac.lcsr.jhu.edu/cisst), as well as less open “defined 
interface” packages supported by various surgical navigation vendors. 

 
Figure 10: JHU’s CISST libraries and “Surgical Assistant Workstation (SAW)” infrastructure and 
some applications.  A) Overall scheme; B) I-STAR’s TREK system27, incorporating CISST and other 
open source packages; C) JHU/Columbia snake robot45, 70, 75 performing bimanual suturing task; D) 
Snake robot combined with LARS33, 112 robot for manipulating an ultrasound probe for elastography74; E) 
Ultrasound elastography on a DaVinci surgical robot.21 

Trek images courtesy of A. Uneri and  J.H. Siewerdsen, JHU 
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Interoperability is an important design goal for these packages.  For example, our open-source, cross-platform 
CISST/SAW infrastructure105-111, illustrated in Figure 10, provides a component-based software framework for 
integrating robots, haptic devices, imagers, video and visualization subsystems, navigational trackers, and other devices 
commonly found in CIIM systems.  It is specifically designed to provide a convenient structure for “wrapping” 
application programming interfaces to commercial systems such as the DaVinci surgical robots as well as promoting 
interoperability among research systems.  Many of the examples shown in the figures use these libraries, which have 
been essential in enabling us to reuse software developed for one application in another.  No one package is (or is likely 
to become) universal and all-encompassing for a field as broad as CIIM, and our strategy has been to develop interfaces 
to other open-source and defined-interface packages wherever this makes sense.  For example, Figure 10B shows the 
architecture of the TREK system27 developed by Uneri et al. in the I-STAR laboratory at Johns Hopkins for image-
guided navigation and intraoperative imaging and visualization.  

5. CONCLUDING REMARKS 
Computer-integrated interventional systems have the potential to enable significant improvements in clinical care.  The 
partnership between information processing systems, advanced technology, and human clinicians can significantly 
improve outcomes by making interventions less invasive, more precise, more consistent, and safer.  Further, the 
information generated during the treatment of individual patients can be saved and analyzed to improve treatment 
processes, in a manner analogous to the use of information generated during manufacturing may be used to improve 
industrial processes and product quality.  Achieving this vision necessarily requires viewing CIIM as a system process, 
in which patient modeling, treatment planning, treatment execution and monitoring and integration with larger enterprise 
information infrastructure are all important components.    

One of the challenges in CIIM is maintaining a system viewpoint, emphasizing the interconnectedness and reusability of 
technical components, while also preserving sufficient application focus to ensure that specific progress can be made.  
Finding the right balance is often difficult, but I have found it to be essential.   Further, CIIM spans many cultures, each 
of which has an essential role to play in promoting progress.   Clinicians understand the problems to be solved and 
(ultimately) must see a real clinical advantage for patients from the use of any CIIM system.  Engineering researchers 
are capable of producing the innovations needed to address technology barriers.  Industry has the resources and the 
specialized expertise needed to introduce innovative systems into widespread deployment.  Patients, policy makers, and 
insurers  (as well and engineers and clinicians) need to be educated to understand and make rational decisions about 
costs and choices.  This is not easy.  For those developing new systems, frequent communication, mutual education, and 
rapid iteration toward systems addressing clear clinical needs is necessary.  But it can also be very rewarding. 

6. AN AFTERNOTE 
This paper was written to accompany a keynote address to the 2012 SPIE Medical Imaging Conference on Image-
Guided Procedures, Robotic Interventions and Modeling.  The intent is to describe some broad themes associated with 
CIIM, illustrated by examples chosen from my work and that of colleagues Johns Hopkins.  It is not intended to be a 
general survey of work in the field.  There is a large and growing body of research, both at Johns Hopkins, and 
elsewhere, addressing each of the topics presented here. A thorough survey of this literature is beyond the scope of this 
paper.  As mentioned earlier, thorough surveys of medical robotics and interventional systems may be found in some of 
my published survey paperse.g.,1-6 or those by other authors. 
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