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ABSTRACT 

Spin-symmetry breaking in nanoscale structures caused by spin-orbit interaction, leading to a new branch in optics – 
spinoptics is presented. The spin-based effects offer an unprecedented ability to control light and its polarization state in 
nanometer-scale optical devices, thereby facilitating a variety of applications related to nano-photonics. The direct 
observation of optical spin-Hall effect that appears when a wave carrying spin angular momentum (AM) interacts with 
plasmonic nanostructures is introduced. A plasmonic nanostructure exhibits a crucial role of an AM selection rule in a 
light-surface plasmon scattering process. A spin-dependent dispersion splitting was obtained in a structure consisting of a 
coupled thermal antenna array. The observed effects inspire one to investigate other spin-based plasmonic effects and to 
propose a new generation of optical elements for nano-photonic applications. 
 
Keywords: nanoaperture, plasmon-polariton, spin-orbit interaction, geometric phase, optical spin-Hall effect 
 

1.  INTRODUCTION 

The interaction of light with metallic subwavelength structures exhibits various anomalous effects such as extraordinary 
optical transmission and beaming. These effects have been elegantly explained by a mechanism involving the coupling 
of light to collective surface-confined electronic oscillations known as surface plasmon-polaritons (SPPs). Extensive 
research has been carried out in the field of electromagnetic surface waves due to its technological potential and 
fundamental implications. Apparently, the handedness of the light's polarization (optical spin up/down) may provide an 
additional degree of freedom in nanoscale photonics. The dynamics of spinning light was investigated, and the effect of 
spin on the trajectories of polarized light beams (spin-orbit coupling) was experimentally observed, with results that 
agree with the predictions of Berry’s phase theory 1. We examine the spin-orbit coupling effects that appear when a wave 
carrying intrinsic angular momentum (spin) interacts with a nanoscale structures. The Berry’s phase is shown to be a 
manifestation of the Coriolis effect in noninertial reference frame attached to the wave. The theory is supported by 
experiment demonstrating the spin-orbit coupling of electromagnetic waves via a surface plasmon anisotropic 
inhomogeneous nanostructure. The measurements verify the unified geometric phase, demonstrated by the observed 
polarization-dependent deflection (spin-Hall effect) of the waves 2,3. 
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2.  OBSERVATION OF THE SPIN-BASED PLASMONIC EFFECT IN NANOSCALE 

STRUCTURES 

The proposed anisotropic inhomogeneous plasmonic structure was produced on top of a thin metal film evaporated onto 
a glass plate. The element consisted of a cavity (a spiral Bragg grating with a central defect), surrounded by a coupling 
grating (Fig. 1(a)). The structure was illuminated by circularly polarized light (R – right-handed, L – left handed). The 
intensity in the plasmonic cavity was measured by a Near-field Scanning Optical Microscope (NSOM). The measured 
intensity distribution exhibits a strong dependence on the incident spin (see Fig. 1(a)). An annular ring structure with a 
dark spot in the center for R illumination and with a bright spot for L illumination indicates coupling to different spiral 
plasmonic modes. The origin of the spin-dependent change in the near-field intensity distributions lies in the geometric 
phase of the excited plasmonic mode. In the most general case, when a wave carrying an arbitrary spin angular 
momentum changes its direction of propagation and polarization state, the geometric phase is given by a simple 
expression stemming from the Coriolis effect 2. The Coriolis effect is a result of the rotation of the reference frame, 
represented by the local direction of the grating grooves. Accordingly a spiral geometric phase with spin-dependent 
helicity arises in a circular grating 3. In the spiral structure, (see Fig. 1(a)) an additional dynamic phase arises as a result 
of a space-variant path difference. The overall phase in the spiral cavity is the sum of the geometric and dynamic phases, 
which is manifested by different spiral modes that are obtained in the cavity for different polarizations. 

One of the possible technological implementations of the plasmonic geometric phase could be a spin-dependent 
plasmonic focusing lens. The proposed structure is presented in Figure 1(b). This structure was illuminated from the 
bottom with R and L-polarized plane waves and the near-field intensity distribution was collected by the NSOM. A spin- 

Figure 1. (a) The scanning electron microscope image of the spiral nanostructure and the scheme of the optical setup. 
Intensity distribution in the cavity measured by a NSOM for R and L illumination. (b) Spin-dependent plasmonic lens 
based on a plasmonic spin-Hall effect. The intensity distributions measured by a NSOM for R  and L illumination and 
the corresponding transverse cross-sections of the measured intensity distributions in the focal plane of the lens (R - 
blue squares, L - red circles ) Calculated cross-sections are plotted for each polarization (solid blue line -R; dashed red 
line - L). The SEM picture of the element is depicted in the inset. 

dependent transverse shift of the focus is observed by comparing the spots (Fig. 1(b)). This shift can be regarded as a 
manifestation of the optical Magnus effect (optical spin-Hall effect) which arises in our system due to a spiral geometric 
phase. The observed effects inspire one to investigate other spin-based plasmonic effects and to propose a new 
generation of optical elements for nano-photonic applications. 
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3. OBSERVATION OF OPTICAL SPIN SYMMETRY BREAKING IN 

NANOAPERTURES 

Observation of a spin symmetry breaking effect in plasmonic nanoscale-structures due to spin-orbit interaction is 
presented. We demonstrate a nanoplasmonic structure which exhibits a crucial role of an angular momentum (AM) 
selection rule in a light-surface plasmon scattering process. In our experiment, the intrinsic AM (spin) of the incident 
radiation is coupled to the extrinsic momentum (orbital AM) of the surface plasmons via spin-orbit interaction. Due to 
this effect, we achieved a spin-controlled enhanced transmission through a coaxial nanoaperture 4. 

In our experiment the spin-orbit interaction mechanism and the AM selection rules were experimentally verified by 
investigating the effect in a circularly symmetric – achiral – nanostructure. For this purpose we induced an external  

 

Figure 2. Removal of the spin-degeneracy in circular corrugation by use of externally induced OAM. (a) experimental setup. 
A laser beam is modulated by a Spatial Light Modulator (SLM) to obtain a spiral phase and then incident through a 
Beam Splitter (BS) onto a coaxial aperture with circular corrugation. The transmitted light is captured in the image 
plane by the camera. The spiral phase with lext = 2, the measured intensity distribution across the incident beam, and the 
SEM picture of the element are presented in the figure. (b) intensity distribution cross-sections captured by the camera 
for different lext. 
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OAM carried by the incident beam. We fabricated the element, which consisted of an individual coaxial aperture, 
surrounded by an annular coupling grating (see Fig. 2a). This aperture was illuminated by a green laser light at a 
wavelength 532nm whose phase was modulated by a spatial light modulator (to achieve a spiral phase with topological 
charges 2,0 ±=extl . We obtained a spin-dependent enhanced transmission by controlling the behavior of the device with 
external orbital AM, (see Fig. 2(b)).  

4. PLASMONIC AHARONOV-BOHM EFFECT 

A circular nanoslit was used to excite an out-propagating plasmonic wavefront. We measured the scattered plasmonic-
wave dislocation strength by its interference with an additional plasmonic reference wave (see Fig. 3). The dislocation 
strength was shown to be equal to the incident optical spin (polarization helicity) in a manner similar to the Aharonov-
Bohm wavefunction dislocation strength being equal to the magnetic flux parameter. Moreover, we experimentally 
demonstrated that the surface plasmon-polariton wave dislocation is independent on the incident wavelength and the 
nanoslit diameter, therefore verifying the geometric nature of the phenomenon. This effect is attributed to the optical 
spin-orbit interaction – coupling of the intrinsic angular momentum - spin and the extrinsic (orbital/linear) momentum of 
the electromagnetic field 5. Our experiment was analyzed using a rotating reference frame, which leads to a spin-
dependent correction of the momentum term in the wave equation. The experiment and analysis presented in this letter 
elucidate the significance of the optical spin in the scattering of surface plasmon-polaritons from  

Figure 3. Experimentally measured near-field intensity for (a) 1=σ  polarization (right circular polarization) and (b) 
1−=σ  polarization (left circular polarization) at  wavelength 800 nm. The measured fringe maxima are presented in 

(c) for 1=σ  and (d) for 1−=σ  states. The black circle in (c) and (d) represents the location of the circular nanoslit. 
The inset in (b) with a dark spot in the center (marked with an arrow) is the measured intensity distribution inside the 
circular slit. 
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5. OPTICAL SPIN-HALL EFFECTS IN PLASMONIC CHAINS 

Spin-Hall effect is a basic phenomenon arising from the spin-orbit coupling of electrons. In particular, the spatial 
trajectory of the moving electrons is affected by their intrinsic angular momentum. More generally, the dispersion 
relation of the particles is modified in a spin-dependent manner.6 The spin-Hall effect is regarded as intrinsic when it 
arises due to Rashba coupling (Berry curvature), while the extrinsic effect occurs due to the spin-orbit-dependent 
scattering of electrons from impurities. The optical spin-Hall effect (OSHE) – beam displacement and momentum shift  

 
 

Figure 4. The OSHE-LI and OSHE-LA for circular chains. The measured far-field intensity distribution of the spin-flip 
component scattered from a circular chain of ordered (a) and disordered (c) coaxial apertures at a wavelength of 780 
nm, and rotating nanorods with 2=m  at a wavelength of 730 nm (b); bottom, SEM images of the chains with radii of 
5μm. The spin-Hall momentum deviation is accompanied by a spiral phase-front with the topological charges l=2 and 
l=4, for the OSHE-LI (a) and OSHE-LA (b), respectively. Note that no spin-Hall momentum deviation is observed 
from the disordered chain (c). 

 

due to the optical spin (polarization helicity) – was recently presented. 1,7 The effect was attributed to the optical spin-
orbit interaction occurring when the light passes through an anisotropic and inhomogeneous medium. Here, we present 
and experimentally observe the optical spin-Hall effects in coupled localized plasmonic chains 8. The locally isotropic 
optical spin-Hall effect (OSHE-LI) is regarded as the interaction between the optical spin and the path of the plasmonic 
chain with an isotropic unit cell. In contrast, the locally anisotropic optical spin-Hall effect (OSHE-LA) occurs due to the 
interaction between the optical spin and the local anisotropy of the unit cell, which is independent on the chain path. This 
latter mechanism expands the scope of the OSHE and provides an additional degree of freedom in spin-based optics. 

The OSHE-LI was studied  on a coupled plasmonic chain of annular apertures, whose local orientation varies linearly  
with the x coordinate. The local orientation of the curved chain induces local anisotropy variation in the scattered field. 
Polarization analysis shows that the scattering from the curved chain contains a spin-flip component, which is experience 
a spin-dependent beam deflection. Similar beam deflection was observed in scattering from linear chain of rectangular 
apertures (nanorodes) with orientation linearly varied along the chain (OSHE-LA). In other experiment the circular 
chains of coaxial apertures and rotating nanorods  demonstrate  scattered wave with an orbital angular momentum as 
result of spin-orbit interaction between light and anisotropic inhomogeneous structure (see Fig. 4). The observed OSHEs 
are due to the collective interaction of the localized modes within the periodic plasmonic chains. Emergence of spiral 
phase front with orbital AM was then directly verified by interference experiment and strength of phase singularity was 
measured.  
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6. SPIN SYMMETRY BREAKING IN THERMAL EMISSION 

When light is emitted or scattered from a revolving medium, it exhibits a dispersion splitting – angular Doppler effect 
(ADE) – which depends on the circular polarization handedness (the photon's spin)9. The dispersion splitting is attributed 
to a spin-dependent correction of the momentum term in the wave equation due to rotation of the emitting medium. This 
splitting is the manifestation of the spin-orbit interaction, which is the basis for optical spin-Hall, Magnus, and Coriolis 
effects. Here, we report on a geometric Doppler effect manifested by a spin-dependent dispersion splitting of thermal 
radiation emitted from a structure whose local anisotropy is rotated along x-axis.  The observed effect is attributed to the 
dynamics of the thermally excited surface wave propagating along the structure10.  

         In our experiment  deepenings ("thermal antennas") with the subwavelength size of 1.2μm × 4.8μm (Fig. 5, 
inset(i)) were etched to a depth of 1μm on a SiC substrate forming isolated thermal antenna and coupled thermal antenna 
array (Fig. 5, inset(iii)) with a period of 6.11=Λ μm. The upper plot in Fig. 4 is the emission spectrum of the isolated 
thermal antenna, which shows local resonances at frequencies 890 cm-1 and 945 cm-1. These modes exhibit strong linear  

 

 
Figure 5. Spectral emission from the isolated thermal antenna (top, SEM image in inset (i)), and for homogeneous coupled 

oriented antenna array (bottom, SEM image in inset (iii)); red and blue curves correspond to polarization along the 
short axis and long axis of the antenna respectively, and black for the total intensity. Inset(ii) presents a FDTD 
simulation of the intensity distribution in vicinity of an isolated antenna at 890 cm-1, white line indicates the location of 
the antenna. Black arrows point to the local resonances. 
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polarization along the direction of the small axis of the antenna.  The same polarization of local modes is observed in the 
emission from the coupled antenna array (Fig. 5, inset (iii)). However, in this case the spectrum at normal incidence, 
contains an additional narrow peak at 830 cm-1, which is also strongly linear polarized along the same direction (Fig. 5, 
bottom).  By measuring the emission dispersion from the array of identically oriented antennas, we have found that the 
narrow spectral peak contains two extended dispersive modes - a fast mode and a slow mode, attributed to coupled, 
localized surface phonon-polaritons (Fig. 6 (a)). By applying polarization measurements, we verified that the 
polarization direction of the slow mode follows the antennas' orientation. 
Different and very intriguing polarization properties were observed in an array of antennas whose orientation was 
gradually rotated along the x-axis (Fig.6(b), inset). In the measured dispersion of thermal radiation 10, the slow mode 
exhibits a clear splitting in the momentum of the emitted waves.  The above phenomenon can be elucidated when 
considering surface waves propagation. As surface phonon-polaritons travel along the superstructure, they radiate a 
linearly polarized field that rotates at a spatial rate dxdφ=Ω (φ - local antenna's orientation). This rotation induces 
coupling between the intrinsic and the extrinsic momentum – spin-orbit interaction – which leads to a spin-dependent 
perturbation of the momentum  Ω=Δ σk     , where 1±=σ  is the spin state. By solving the perturbated Helmholtz 
equation we derive the dispersion shift ( )Ω+= σωω xk   in the momentum dimension. Therefore, the original dispersion 
of the homogeneous structure is split into two emitted modes with opposite spin states. We found the spin-projected 
dispersion of the thermal emission (Fig. 6(b)) by measuring the Stokes' polarization parameter S3, which represents the 
circular polarization portion. This measurement reveals that the slow mode is split in the momentum by Ω2  between the 
two opposite spin-states.  

Figure 6.  (a) The measured emission dispersion of the coupled thermal antenna array (Fig. 5 inset (iii)). Dashed lines 
highlight the dispersion of the slow and the fast modes. (b) Spin-projected dispersion of the rotating antenna array, 
obtained by S3 measurement. Dashed/dotted lines highlight the dispersion of the spin-split slow mode (red/blue color 
corresponds to a positive/negative spin projection, respectively). The observed dispersion shift is Ω=Δ σk , signs of 

1±=σ  correspond to two opposite circular polarizations; in the inset - SEM of the antenna array rotating along the x-
axis with a period ( )aa /;6 π=ΩΛ= . 

7. CONCLUSION 

The spin of photons can provide an additional degree of freedom in nanoscale photonics leading to a new branch in 
optics – Spinoptics 11,12.    

Proc. of SPIE Vol. 8269  826902-7

xvii

Proc. of SPIE Vol. 8272  827201-17



 
 

 
 

REFERENCES 

[1] Bliokh, K. Y., Niv, A., Kleiner, V. and Hasman, E., "Geometrodynamics of spinning light", Nature Photonics 2, 
748-753 (2008). 

[2] Bliokh K. Y., Gorodetski Y., Kleiner V.,  and Hasman E., "Coriolis effect in optics: unified geometric phase and 
spin-Hall effect", Phys. Rev. Lett. 101(3), 030404-1 – 030404-4  (2008) 

[3] Gorodetski, Y., Niv, A., Kleiner, V. and Hasman, E., "Observation of the spin-based plasmonic effect in nanoscale 
structures", Phys. Rev. Lett. 101(4), 043903-1 – 043903-4 (2008). 

[4] Gorodetski Y., Shitrit N., Bretner I., Kleiner V., and Hasman E., "Observation of Optical Spin Symmetry Breaking 
in Nanoapertures", Nano Letters, 9 (8), 3016–3019 (2009). 

[5] Gorodetski Y., Nechayev S., Kleiner V., and Hasman E., "Plasmonic Aharonov-Bohm effect: Optical spin as the 
magnetic flux parameter",  Phys. Rev. B 82, 125433-1 - 125433-4(2010) 

[6] Bychkov Y. A., Rashba E. I., "Oscillatory effects and the magnetic susceptibility of carriers in inversion layers", J. 
Phys. C,  17(33), 6039-6045 (1984). 

[7] Leyder, C., Romanelli, M., Karr, J. Ph., Giacobino, E., Liew, T. C. H., Glazov, M. M., Kavokin, A. V., Malpuech, 
G., Bramati, A., "Observation of the optical spin Hall effect", Nature Phys. 3, 628-631, (2007). 

[8] Shitrit, N., Bretner I., Gorodetski Y., Kleiner, V.  and Hasman E., "Optical Spin Hall Effects in Plasmonic 
Chains", Nano Letters 11, 2068 (2011). 

[9] Garetz, B. A., "Angular Doppler effect", J. Opt. Soc. Am. 71, 609-611 (1981). 
[10] Dahan N., Gorodetski Y., Frischwasser K., Kleiner V., and Hasman E., "Geometric Doppler Effect: Spin-Split 

Dispersion of Thermal Radiation", Phys. Rev. Lett. 105(13), 136402-1 - 136402-4 (2010). 
[11] Frischwasser, K., Yulevich, I., Kleiner, V. and Hasman, E., "Rashba-like spin degeneracy breaking in coupled 

thermal antenna lattices", Opt. Express 19, 23475-23481 (2011). 
[12] See additional references at www.technion.ac.il/optics 

 

Proc. of SPIE Vol. 8269  826902-8

xviii

Proc. of SPIE Vol. 8272  827201-18


