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Abstract

The impact of wafer stepper overlay errors on device yields and design rules are studied.
First, the classical Lynch model for normally distributed sizing and overlay errors is
reformulated for orthogonal geometries. Then the distribution of overlay errors in the
linear Perloff model describing global alignment is derived. Finally, a Monte Carlo
program, OVS, for simulating stepper overlay errors is introduced. OVS is used to
determine the impact of individual component errors, such as those due to lens distortion
or to mask making, on the overall distribution of errors.

Introduction

Pattern overlay tolerance is one of the key design rules for integrated circuit
manufacturing. The current method of specifying overlay tolerances is to state, on the
basis of simple error budgets, the value of the overlay error at a given high percentage
of the total measured data. There are at least three major problems with thisl. First,
most error budgets treat all errors as random when in fact some are systematic. Second,
these error budgets rarely take field size or wafer size into account. Finally, rarely
are enough data points taken to ensure what is really important: that no point within the
imaged array of chips be misregistered by more than the design rule.

An overlay simulation comouter program, OVS, has been written to predict the total
distribution of errors given as input the characteristic component error distributions in
interfield errors (translation, wafer rotation and expansion, orthogonality) and
intrafield errors (die rotation, magnification, trapezoid, and distortion). Reticle to
reticle stacking errors are taken into account. These are used in a Monte Carlo
simulation to generate the expected total error distribution over thousands of individual
fields and wafers. The program can be used to predict the performance of a single stepper
or of a large group of randomly mixed steppers.

The underlying model for the simulation is the linear interfield model introduced by
Perloff2 combined with the polynomial intrafield model introduced by MacMillen and
Ryden3. Each error is given a systematic offset and a random component characterized by a
Gaussian distribution of a given sigma. The simulation computes the errors found at F

points per field, and W points per wafer, where the number of points and their locations
are set by the user. If any point within the field exceeds the overlay tolerance it is
noted by the program and the field is termed a "bad" field.

The fit of simulation data to experimental data is found to be quite good. One
interesting result of the simulations is that many distributions are platykurtic, i.e.,
have less data in the tails of the distribution than the best fit Gaussian computed from
the same data, a tendency noticed by many workers from experimental data. It is also
found that as the size of systematic errors grow with respect to random errors, the more
the distributions tend to be platykurtic.

Emphasis is placed in this report on determining the overall distribution of overlay
errors given the distribution of component errors. First considered is a simple overlay
model proposed by Lynch4 which will allow development of the ideas advanced here against
a classical background. Then consequences of the linear model2 will be explored in terms
of its predictions for global overlay error distributions. It is found, for example, that
the linear model predicts a semicircular histogram of overlay errors on a given wafer
aligned at two points. In the last section the overlay simulator model and details of the
computer program are discussed. The effects of individual component errors on the entire
error distribution are examined, assuming that the distributions of component errors can
be measured and specified5.

As a result of this work, a new proposal is made for the specification of overlay errors
which corresponds more closely to the desires of chip designers. The proposal is called
the "good fields rule ", in which stepper overlay is quantified in terms of the percentage
of individual fields which contain no error greater than the specification.
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The good fields rule for total overlay satsfies many intuitions about how overlay affects
chip yields and is more stringent than any presently offered by stepper manufacturers.
While a large number of points within the usable image field may be properly registered,
it only takes one bad point to cause circuit failure, resulting in complete yield loss on
single die reticles and fractional yield on multidie reticles.

Lynch Model

Lynch4 studied the problem of contact window limited yields for LSI devices. In his
analysis, the process yield for defining and aligning a circular contact window over a

larger circular pad of polysilicon is derived. Yield is defined as the contact window
falling completely on the poly pad. The minimum contact window size is set by the
aligner's resolution capability. The required size of the poly pad to achieve a given
yield is then calculated from contact size, the process standard deviations for edge
control for both the contact and the poly pad, and the contact to poly alignment standard
deviation. Lynch's model assumes explicitly that the distributions of edge controls for
contact and poly as well as the alignment errors are Gaussian.

Device designers typically do not set radial design rules but instead set rules along
orthogonal directions. Thus a more germane problem is that of a square contact window
falling on a larger square polysilicon feature. If we assume in this case that there is
no asymmetry between edge placement or alignment precision in the X and Y directions then
Lynch's expression can be recalculated. The geometry of the problem is shown in Figures
la and lb. The contact window is free to expand or contract with mean size C and standard
deviation sc. The poly pad likewise has mean size L and standard deviation si. The
overlay error is assumed to have zero mean error and a standard deviation along the X or
Y directions of so. Normal distributions are assumed for each.

The problem of the lithographer is to specify the smallest tolerance, T = 1 /2(L - C),
which will allow the contact to fall completely on the poly pad at a given high
percentage level. The tolerance is the nominal distance between the edge of the contact
to the nearest poly edge. In a given case, this distance will change to D = 1/2(1 - c)

where 1 is the true size of the pad and c the true size of the window. The distribution
of D is also Gaussian6 with mean T and standard deviation (sc2 + sí2)1/2

f(D) = (27(sc2+sí2))-1/2 exp( -(T - D)2/ 2(sc2+ 512)) (1)

The probability that the contact falls completely on poly is then the probability that D
- Idxl and D - Idyl > 0. The probability that Idxl (or Idyl) < D for a given D is given
by

P( Idxl , idyl < D) = ( 1 - 2 (D / so))2 where i(x) _ (211)-1/2 Sexp(- t2 /2)dt (2)

-oo

The probability then that the contact falls on the poly, that it yields at a given
tolerance T, is then the convolution of eqn. 1 and eqn. 2:

oo

Y(T) = (2TI(sc2 +s12)) -1/2 (1 - 2 5(D /s0))2 exp(- (T -D)2 / 2(sc2 +sí2)) dD (3)

o

This expression allows one to find how big to make the tolerance given normally
distributed process variations in poly and contact sizing, and in overlay. As might be
expected, it satisfies the root sum square error budget calculation typically used7 to
calculate the tolerance. This can be seen in Figure 2 in which Y(T) is plotted as a

function of T for three different values of overlay precision. The contact sizing
precision is 0.05 um, poly precision is 0.03 um, and the three overlay precisions are
0.05, 0.1, and 0.15 um, all numbers at one standard deviation. For the 0.15 um, one sigma
case the root sum square of the sizing and overlay precisions is 0.22 um. Y(T) = 0.68 at
0.22 pm, which is the percentage included within one standard deviation in a Gaussian or
normal distribution, demonstrating the underlying consistency of the Lynch model.

From these simple considerations it can be seen clearly why overlay is such a key
parameter for lithography. For example, assume that the smallest contact size which can
be reliably defined with 0.05 um, 1 sigma control is 1.0 um. The poly width L = C + 2T
for this case is 1.48 pm at the 99.7% yield level, and 2.00 um for the case where overlay
control is 0.15 pm, one sigma. The area of the poly pad can be cut by 45% by increasing
overlay precision from 0.45 um, 3 sigma, to 0.15 um, 3 sigma. Since a CMOS transistor
cell size is proportional to this area, it can be seen how sensitive device size is to
overlay precision.

SPIE Vol. 922 Optical /Laser Microlithography (1988) / 95

The good fields rule for total overlay satsfies many intuitions about how overlay affects 
chip yields and is more stringent than any presently offered by stepper manufacturers. 
While a large number of points within the usable image field may be properly registered, 
it only takes one bad point to cause circuit failure, resulting in complete yield loss on 
single die reticles and fractional yield on multidie reticles.

Lynch Model

Lynch 4 studied the problem of contact window limited yields for LSI devices. In his 
analysis, the process yield for defining and aligning a circular contact window over a 
larger circular pad of polysilicon is derived. Yield is defined as the contact window 
falling completely on the poly pad. The minimum contact window size is set by the 
aligner's resolution capability. The required size of the poly pad to achieve a given 
yield is then calculated from contact size, the process standard deviations for edge 
control for both the contact and the poly pad, and the contact to poly alignment standard 
deviation. Lynch's model assumes explicitly that the distributions of edge controls for 
contact and poly as well as the alignment errors are Gaussian.

Device designers typically do not set radial design rules but instead set rules along 
orthogonal directions. Thus a more germane problem is that of a square contact window 
falling on a larger square polysilicon feature. If we assume in this case that there is 
no asymmetry between edge placement or alignment precision in the X and Y directions then 
Lynch's expression can be recalculated. The geometry of the problem is shown in Figures 
la and Ib. The contact window is free to expand or contract with mean size C and standard 
deviation s c . The poly pad likewise has mean size L and standard deviation s~|. The 
overlay error is assumed to have zero mean error and a standard deviation along the X or 
Y directions of SQ. Normal distributions are assumed for each.

The problem of the lithographer is to specify the smallest tolerance, T = 1/2(1 - C), 
which will allow the contact to fall completely on the poly pad at a given high 
percentage level. The tolerance is the nominal distance between the edge of the contact 
to the nearest poly edge. In a given case, this distance will change to D = 1/2(1 - c) 
where 1 is the true size of the pad and c the true size of the window. The distribution 
of D is also Gaussian 6 with mean T and standard deviation (s c 2 + s-|2

f(D) = (2TT(s c 2 + Sl 2))-l/2 exp(-(T - D)2/ 2(s c ?+ s^)) (1)

The probability that the contact falls completely on poly is then the probability that D 
- Idxl and D - |dy| > 0. The probability that |dx| (or |dy| ) < D for a given D is given
by

P( Idxl, Idyl < D) = ( 1 - 2§(D / s 0 )) 2 where £>(x) = ( 2 TT ) -1/2 f exp( -t?/2) dt (2)

-co

The probability then that the contact falls on the poly, that it yields at a given 
tolerance T, is then the convolution of eqn. 1 and eqn. 2:

oo

Y(T) = (2TT ( Sc 2 + Sl 2))-l/2 \(i - 2§(D/s 0 )) 2 exp(-(T-D)2 / 2(s c 2 +s 1 2)) dD (3)
J 
o

This expression allows one to find how big to make the tolerance given normally 
distributed process variations in poly and contact sizing, and in overlay. As might be 
expected, it satisfies the root sum square error budget calculation typically used? to 
calculate the tolerance. This can be seen in Figure 2 in which YfT) is plotted as a 
function of T for three different values of overlay precision. The contact sizing 
precision is 0.05 urn, poly precision is 0.03 urn, and the three overlay precisions are 
0.05, 0.1, and 0.15 urn, all numbers at one standard deviation. For the 0.15 pm, one sigma 
case the root sum square of the sizing and overlay precisions is 0.22 urn. Y(T) = 0.68 at 
0.22 jam, which is the percentage included within one standard deviation in a Gaussian or 
normal distribution, demonstrating the underlying consistency of the Lynch model.

From these simple considerations it can be seen clearly why overlay is such a key 
parameter for lithography. For example, assume that the smallest contact size which can 
be reliably defined with 0.05 [am, 1 sigma control is 1.0 jam. The poly width L = C + 2T 
for this case is 1.48 jam at the 99.7% yield level, and 2.00 |am for the case where overlay 
control is 0.15 urn, one sigma. The area of the poly pad can be cut by 45% by increasing 
overlay precision from 0.45 jam, 3 sigma, to 0.15 urn, 3 sigma. Since a CMOS transistor 
cell size is proportional to this area, it can be seen how sensitive device size is to 
overlay precision.

SPIE Vol. 922 Optical/Laser Microlithography (1988) / 95



Lynch Model*

Poly pad

Contact hole

s-
-H4X////1.4-

4Y
-f--C-

T

L

Lynch Model

I

Ac

Tolerance T= -1 ( I--C -[4X +4Y2)/2,2 -[4L2]/a2 ß[4c] /2
2 P(AXAY)= e

2
° P(AL) - e L P(4c)-

Question: Given the normal process variations for poly ad 2n h 2ito 2
and contact hole sizings and for contact to poly
overlay, how big should the tolerance T be ?

W.T. Lynch, IEDM Technical Digest, 1977

Figure la. Definition of the tolerance T
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Overlay Error Distribution for Global Alignment

Interfield registration errors made by reduction steppers using two -point global
alignment can be modelled successfully by linear regression analysis as shown by Perloff
and co- workers2'8 Kim and Ham9 showed that assumption of the linear model of
registration errors leads to the result that the loci of equal -valued errors in the
Cartesian coordinates x and y on the wafer are straight lines which intersect at oblique
angles. There is a single point in the xy (wafer) plane at which the registration error
is zero, which can fall either on the wafer or outside it. Errors less than a constant
absolute value fall within a parallelogram centered on the zero error point. Equal valued
vector displacements have elliptical contours.

Registration errors on a globally aligned wafer are estimated independently to first
order in the Cartesian coordinates x and y as

dx = Tx - ex y + Ex x + sx (4)

dy = Ty + ey x + Ey .Y + sy (5)

where Tx, Ty, Ex, Ey, ex, and 8y are parameters formed by linear regression of a data set
consisting of N sets of errors (dx, dy) at wafer locations (x, y). The sx and sy are
residual errors not fitted and are usually associated with random stage stepping errors.
The first order error parameters can be grouped into three simple geometrical classes :

translation (Tx, Ty), rotation and orthogonality (9x, 9y), and expansion (Ex, Ey).

The distribution of errors across a wafer predicted by the linear model can be determined
by exploring the behavior of eqn (4) and (5) at different wafer locations. One
interesting result shown by Kim and Ham is that the loci of equal- valued errors in x and
y are straight lines. This can be seen by solving eqn (4) for y (assume sx = sy = 0) :

y = (Ex /ex)x + (Tx - dx)/9x (6)

which is of the linear form y = ax + b, where the slope a = (Ex /ex) and the y intercept b
= (Tx - dx) /9x. Similarly, solution of eqn (5) yields y = -(9y /Ey) x + (T + dy) /Ey.
Simultaneous solution of eqns. (4) and (5) when dx = dy = 0 yields the position of the
zero error point:

(TxEy + GxTy) (ExTy - GyTx)
xo = - ; Yo = (7)

9x0y + ExEy 9x9y + ExEy

Depending on the wafer radius, the origin of coordinates and the magnitude of the errors
in T, e, and E, the zero error point can either fall on the wafer or outside it (i.e.,
there is no point on the wafer with perfect overlay). A simple interpretation is that
there is a single point in the xy plane at which there is zero overlay error and that
error in x and y less than dx = + c and dy = + d respectively are bounded by a

parallelogram with sides described by

y = (Ex/ex)x + (Tx + c)/ex

y = - (9y/Ey)x + (Ty ± d)/E.Y

(8)

(9)

The parallelogram is centered on the zero error point (x0, yo). This is illustrated in
Figure 3. Lines of constant dx are inclined at an angle with respect to the x axis,
while lines of constant dy are inclined at an angle -ywhere tan ,1 = Ex /ex and tangy= -
Ey /8y.

If one instead considers the locus of equal valued vector errors (d r2 = (dx2 + dy 2)1 /2),

then the contours are ellipses, also centered on the zero error point, with the semi -
major axis inclined at an angle q) r with respect to the x axis:

2(eyEy - exEx)
tan 21r =

(Ex +ex2)- (Ey2 +ey2)

A simple illustration of these results is the special case of isotropic expansion error
without translation or rotation. Traditional vector maps represent this type of error
with radially directed arrows whose lengths grow as the distance from the center
increases. This method suggests that the same error can be represented with circular
contours, where the circles are centered at the origin and whose radii grow linearly with
increasing distance from the origin. Contours of constant and equal dx and dy are
squares. The case of pure rotation error without translation or expansion also yields

(10)
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circular contours centered at the origin. The general case, where translation, rotation,
and expansion errors are present, yields ellipses and parallelograms centered on the zero
error point which is not the origin of coordinates. Figure 4 shows an example wafer for
which both the vector map and contour representations are given. The error parameters are
listed in the figure.

What relationship exists between the model parameters and the distribution of overlay
errors on a single wafer? Since one can compute the straight line contours of constant dx
or dy increments, imagine sectioning the wafer into areas between successive dx or dy
increments (see Figure 5). Once this is done the relative size of each area can be
calculated using standard relations for the sector of a circle which can then be used to
construct the histogram of errors on the wafer. The mathematical details of the
derivation are given in reference 12.

The histogram of x overlay errors, H(dx), on a wafer of radius R and with error
parameters Tx, 9x, and Ex is given by

2 d

H (dx) _
TX

1

(dx - Tx)2

R2(9x2+Ex2)

1/2

where H(dx) represents the percentage of wafer area within + d/2 of dx and dx ranges
between Tx - R (9x2 +Ex2)1 /2 and Tx + R (9x2 +Ex2)1 /2. The expression for the y histogram,
H(dy), is identical to this with all subscripts x replaced by y.

This result explains why overlay errors across a single wafer which is aligned at two
points are in general not normally distributed. The form of the histogram is
semicircular! It is straightforward to calculate that the standard deviation of this
distribution is 's = (1 /2)R (9x2 +Ex2)1 /2. Thus the entire distribution is contained within
+ 2s of the mean Tx.

Figures 6a and 6b show the measured and modeled X axis overlay errors for the example
wafer illustrated in Figure 4. The modeled histogram was calculated using equation 11.
Random stage errors account for most of the difference between the modeled and measured
data.

OVS : Overlay Simulator for Wafer Steppers

Anyone who has studied wafer stepper overlay specifications knows that it is a difficult
job to translate the stepper vendor's specifications into numbers which device designers
can use. The reasons are that the vendor specification usually refers to an ideal test
case, in which wafers with nearly perfect alignment targets are used. Field size is

usually restricted to values less than the maximum field. Only a limited number of points
across the image field and across the wafer are actually measured. The vendor then
guarantees that a given percentage of the total number of measurements will fall below
the maximum specified overlay error. For example, one major stepper vendor specifies that
overlay be measured at 17 points per image field and at 17 separate fields on each of
three wafers. This gives a total of 17 X 17 X 3 = 867 data points per axis. Only 9 points
per axis are allowed to exceed the overlay specification.

This type of sampling plan, however, does not guarantee that chips designed with an
overlay tolerance equal to the vendor specification will yield at the same high
percentage. The major reason is that it only takes one bad point, i.e., one location
where the overlay rule is violated, to cause circuit failure and zero yield for that
chip. It doesn't matter that 99% or more of the rest of the chip's area is overlaid
within specification, the chip still doesn't yield. In the example sampling plan
described, assume that matched steppers are used to print only one die per field. In the
worst case, one might have a bad corner of the field due to lens to lens distortion
differences in which the x overlay error is very close to the spec limit without
considering alignment errors. The sampling plan would allow this point to exceed
specification in 9 fields out of 17 X 3 = 51 total. A similar situation in the y
direction added to this could lead to 18 fields out of 51 containing a point which
violated the design rule. The vendor's specification that 99% of the errors were less
than the given tolerance is met, yet only about 65% of the chips printed would yield.

One response to this reasoning is that such a situation is highly unlikely.
Unfortunately, it is nearly as unlikely that only one field would contain all the overlay
errors, so that the yield of image fields without bad points would in general be less
than 98% (50 of 51). It must be remembered that modern devices have 15 or more mask
layers, 5 or so of which require the tightest overlay specification, so that total
overlay yield is roughly the yield of one alignment raised to the power 5 (or greater).
Even at 98% single layer yield there is only 90% yield after five critical alignments and
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circular contours centered at the origin. The general case, where translation, rotation, 
and expansion errors are present, yields ellipses and parallelograms centered on the zero 
error point which is not the origin of coordinates. Figure 4 shows an example wafer for 
which both the vector map and contour representations are given. The error parameters are 
listed in the figure.

What relationship exists between the model parameters and the distribution of overlay 
errors on a single wafer? Since one can compute the straight line contours of constant dx 
or dy increments, imagine sectioning the wafer into areas between successive dx or dy 
increments (see Figure 5). Once this is done the relative size of each area can be 
calculated using standard relations for the sector of a circle which can then be used to 
construct the histogram of errors on the wafer. The mathematical details of the 
derivation are given in reference 12.

The histogram of x overlay errors, H(dx), on a wafer of radius R and with error 
parameters T x , 9 X , and E x is given by

[dx) =
2

R (9 x 2+E x 2)l/2

(dx -
1 -

1/2 f ir
, 4. A ,

where H(dx) represents the percentage of wafer area within +_ d/2 of dx and dx ranges 
between T x - R (9 x 2+E x 2)l/2 and T x + R (9 X 2 +E X 2 )!/ 2 . The expression for the y histogram, 
H(dy), is identical to this with all subscripts x replaced by y.

This result explains why overlay errors across a single wafer which is aligned at two 
points are in general not normally distributed. The form of the histogram is 
semicircular! It is straightforward to calculate that the standard deviation of this 
distribution is s = (1/2)R (9 X 2+E X 2)1/2. Thus the entire distribution is contained within 
+_ 2s of the mean T x .

Figures 6a and 6b show the measured and modeled X axis overlay errors for the example 
wafer illustrated in Figure 4. The modeled histogram was calculated using equation 11. 
Random stage errors account for most of the difference between the modeled and measured 
data.

OVS : Overlay Simulator for Wafer Steppers

Anyone who has studied wafer stepper overlay specifications knows that it is a difficult 
job to translate the stepper vendor's specifications into numbers which device designers 
can use. The reasons are that the vendor specification usually refers to an ideal test 
case, in which wafers with nearly perfect alignment targets are used. Field size is 
usually restricted to values less than the maximum field. Only a limited number of points 
across the image field and across the wafer are actually measured. The vendor then 
guarantees that a given percentage of the total number of measurements will fall below 
the maximum specified overlay error. For example, one major stepper vendor specifies that 
overlay be measured at 17 points per image field and at 17 separate fields on each of 
three wafers. This gives a total of 17 X 17 X 3 = 867 data points per axis. Only 9 points 
per axis are allowed to exceed the overlay specification.

This type of sampling plan, however, does not guarantee that chips designed with an 
overlay tolerance equal to the vendor specification will yield at the same high 
percentage. The major reason is that it only takes one bad point, i.e., one location 
where the overlay rule is violated, to cause circuit failure and zero yield for that 
chip. It doesn't matter that 99% or more of the rest of the chip's area is overlaid 
within specification, the chip still doesn't yield. In the example sampling plan 
described, assume that matched steppers are used to print only one die per field. In the 
worst case, one might have a bad corner of the field due to lens to lens distortion 
differences in which the x overlay error is very close to the spec limit without 
considering alignment errors. The sampling plan would allow this point to exceed 
specification in 9 fields out of 17 X 3 = 51 total. A similar situation in the y 
direction added to this could lead to 18 fields out of 51 containing a point which 
violated the design rule. The vendor's specification that 99% of the errors were less 
than the given tolerance is met, yet only about 65% of the chips printed would yield.

One response to this reasoning is that such a situation is highly unlikely. 
Unfortunately, it is nearly as unlikely that only one field would contain all the overlay 
errors, so that the yield of image fields without bad points would in general be less 
than 98% (50 of 51). It must be remembered that modern devices have 15 or more mask 
layers, 5 or so of which require the tightest overlay specification, so that total 
overlay yield is roughly the yield of one alignment raised to the power 5 (or greater). 
Even at 98% single layer yield there is only 90% yield after five critical alignments and
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82% after 10.

Given these considerations a new proposal is made for the specification of overlay errors
which corresponds more closely to the desires of chip designers. The proposal is called
the "good fields rule ":

X% of all fields overlaid to a previous field will contain no bad points, i.e., errors
greater than the specified overlay error.

X% can be a given high percentage, e.g., 99% or 99.7 %, depending on device yield
considerations. The good fields rule for total overlay satsfies many intuitions about how
overlay affects chip yields and is more stringent than any presently offered by stepper
manufacturers.

One serious logistics problem with the good fields rule is the relatively large number of
measurements that need to be taken to ensure the specification directly. It is however
possible to indirectly estimate the error distribution through computer simulation of the
overlay process using as input the characteristic distributions of subcomponent errors
such as reduction, die rotation, trapezoid, distortion, and so forth. To meet this need,
an overlay simulation program, OVS, has been written. The program incorporates a Monte
Carlo routine which simulates the alignment of many reticles and wafers and reports the
statistics on all the errors found. The program can simulate the distribution of errors
expected from a single stepper and from mixed steppers. Errors taken into account,
assuming global alignment, are listed in Table 1.

Table 1 - OVS Input Error Parameters

Intrafield Errors - Single Stepper

1) random magnification error* M

2) random reticle rotation error* R

3) random reticle stacking error* sl

Mixed Steppers

4) relative distortion between two lenses i and j@ D1(i) -D1(j)

Interfield Errors

1) random translation offsets in x and y* Tx,Ty
2) random rotation offset* 8

3) random orthogonality offset* d8
4) random symmetrical expansion (or scaling) offset* E

5) random assymetrical expansion offset* dE
6) random variations around offsets for:!

translation, rotation, and expansion
7) random stage errors& ssk

Field locations 1 = 1 to f; wafer locations k = 1 to w

* - constant for one reticle change
! - chosen for each wafer alignment
@ - constant for all reticle changes
& - chosen at the center of each field k

The program starts by reading intrafield distortion errors for lenses i and j from an
input data file. The relative intrafield distortion at 9 field locations is then
calculated (in principle, any number of field points can be used). This data remains
constant throughout the rest of the simulation. A single stepper is simulated by setting
all the intrafield distortion errors in the data files to zero.

The program then starts a series of loops to simulate the errors incurred by the change
of the reticle and random pressure and temperature variations between reticle changes.
For each reticle change, random die rotation, magnification, and reticle stacking errors
are chosen by the Monte Carlo routine. All component errors in this model except relative
distortion between lenses are assumed to be Gaussian distributed5. A random number
between 1 and 1663 is chosen by a random number generator. The computer then searches a
look -up table which associates the random number with a t -value such that -3 < t < 3. The
random magnification error is then calcualted as M = tsM, where sM is the input standard
deviation for magnification control. In order for the simulation to be as accurate as
possible it is necessary to have good information on the distributions of the component
errors. Likewise, random values are chosen for reticle rotation. Reticle stacking errors
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82% after 10.

Given these considerations a new proposal is made for the specification of overlay errors 
which corresponds more closely to the desires of chip designers. The proposal is called 
the "good fields rule":

X% of all fields overlaid to a previous field will contain no bad points, i.e., errors 
greater than the specified overlay error.

X% can be a given high percentage, e.g., 99% or 99.7%, depending on device yield 
considerations. The good fields rule for total overlay satsfies many intuitions about how 
overlay affects chip yields and is more stringent than any presently offered by stepper 
manufacturers.

One serious logistics problem with the good fields rule is the relatively large number of 
measurements that need to be taken to ensure the specification directly. It is however 
possible to indirectly estimate the error distribution through computer simulation of the 
overlay process using as input the characteristic distributions of subcomponent errors 
such as reduction, die rotation, trapezoid, distortion, and so forth. To meet this need, 
an overlay simulation program, OVS, has been written. The program incorporates a Monte 
Carlo routine which simulates the alignment of many reticles and wafers and reports the 
statistics on all the errors found. The program can simulate the distribution of errors 
expected from a single stepper and from mixed steppers. Errors taken into account, 
assuming global alignment, are listed in Table 1.

Table 1 - OVS Input Error Parameters 

Intrafield Errors - Single Stepper

1) random magnificat ion error* M
2) random reticle rotation error* R
3) random reticle stacking error* S]

Mixed Steppers

4) relative distortion between two lenses i and j@ D-J (i)-D] ( j ) 

Interfield Errors

1) random translation offsets in x and y* Tx» Ty
2) random rotation offset* 9
3) random orthogonality offset* d0
4) random symmetrical expansion (or scaling) offset* E
5) random assymetrical expansion offset* dE
6) random variations around offsets for:! 

	translation, rotation, and expansion
7) random stage errors& ssj<

Field locations 1 = 1 to f; wafer locations k = 1 to w

* - constant for one reticle change
! - chosen for each wafer alignment
@ - constant for all reticle changes
& - chosen at the center of each field k

The program starts by reading intrafield distortion errors for lenses i and j from an 
input data file. The relative intrafield distortion at 9 field locations is then 
calculated (in principle, any number of field points can be used). This data remains 
constant throughout the rest of the simulation. A single stepper is simulated by setting 
all the intrafield' distortion errors in the data files to zero.

The program then starts a series of loops to simulate the errors incurred by the change 
of the reticle and random pressure and temperature variations between reticle changes. 
For each reticle change, random die rotation, magnification, and reticle stacking errors 
are chosen by the Monte Carlo routine. All component errors in this model except relative 
distortion between lenses are assumed to be Gaussian distributed^. A random number 
between 1 and 1663 is chosen by a random number generator. The computer then searches a 
look-up table which associates the random number with a t-value such that -3 < t < 3. The 
random magnification error is then calcualted as M = tsjvj, where SM is the input standard 
deviation for magnification control. In order for the simulation to be as accurate as 
possible it is necessary to have good information on the distributions of the component 
errors. Likewise, random values are chosen for reticle rotation. Reticle stacking errors
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are generated at each of the 9 field locations.

Once the magnification, die rotation, and stacking errors are generated, the intrafield
errors for the lot of wafers are calculated from (1 = 1 to 9)

DX1(i,j) = - R Yl + M xl + (Dix(i) - Dlx(j)) + slx

DY1(i,j) = R xl + M Y1 + (Dly(i) - Diy(j)) + sly

(12)

(13)

The program then enters the wafer alignment loop. It first generates random offsets for x
and y translation, wafer rotation, orthogonality (d0 = 0x - 0y), scaling, and
differential scaling (dE = Ex - Ey) for the wafer lot. For each wafer the program
calculates a translation error in x by generating a random variation around the offset
and adds that to the offset determined at the reticle change. The same is done for y
translation, x and y rotation, and x and y scaling. The errors at the centers of the
fields at all wafer locations k for that wafer are then calculated from

WXk = Tx - Ox Yk + Ex xk + ssx

WYk = Ty + 0y Xk + Ey Yk + ssy

(14)

(15)

where ssx and ssy are random stage errors, generated at each field separately.

The total overlay error at each field location 1 and wafer location k is then calculated
as the sum

VXkl = DXI + WXk

VYkI = DY1 + WYk

(16)

(17)

For each wafer the VXkl and VYkI form two matrices. In order for a field to be considered
good, the corresponding rows in VXkl and VYkI must contain no errors greater than the
specification. The computer sorts through the matrices to find bad fields. It also
calculates the mean x and y errors and x and y standard deviations for all matrices.
Alignment is repeated as often as chosen. In many of the computer runs considered here,
10 wafers are aligned before the next reticle change.

Once the lot of wafers is finished, the computer changes the reticle again and repeats
the procedure described above. After the computer runs through all the reticle changes
requested, it then calculates the overall statistics for the run, including the mean and
standard deviations in x and y for the entire distribution and the percentage good
fields.

It is an easy modification to the program to simulate the behavior of steppers which
employ field by field alignment rather than global alignment. In this case scaling,
orthogonality, and random stage errors are set to zero. Translational and, if
appropriate, die rotational alignment errors are generated at each wafer location k.

The program described here does not calculate nonlinear errors due to trapezoid, or due
to third or fifth order distortion. Nonlinear intrafield errors are lumped together as
unchanging signatures of lenses, and are characterized through the DX and DY input files.
This is not an altogether justifiable assumption since trapezoid errors can change and be
adjusted. It has also been shown that illuminator defocus can lead to third order
intrafield errors which mimic true lens distortion10. However, these errors are assumed
to be quite small in comparison with the others considered here. It is certainly possible
to continue the analysis to cover the case of time varying nonlinear intrafield errors.

As an example of the use of OVS, two different types of 5X reduction wafer stepper were
simulated. The first type uses off -axis global alignment and is uncompensated for
magnification changes as a function of barometric pressure. The second type represents a
stepper with through the lens alignment, barometric compensation, and the ability to
adjust magnification to match wafer expansion due to processing. Global alignment is also
used on this type stepper. In this example, single stepper performance is simulated by
assuming that all intrafield errors except reticle rotation, magnification, and reticle
stacking errors are zero.

Table 2 lists the input parameters for the two simulations. Table 3 lists the percentage
good fields found at various overlay tolerances and the equivalent X + 3 sigma values.
Figure 7 is a plot of good fields percentage versus the overlay design rule.
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are generated at each of the 9 field locations.

Once the magnification, die rotation, and stacking errors are generated, the intrafield 
errors for the lot of wafers are calculated from (1 = 1 to 9)

DX!(i,j) = - R yi + M X] + (Dix(i) - DI X (J)) + si x (12) 

DYi(i.j) = R XT + M yi + (Diy(i) - Diy(j)) + s ly (13)

The program then enters the wafer alignment loop. It first generates random offsets for x 
and y translation, wafer rotation, orthogonality (d 9 = 0 X - 9 y ), scaling, and 
differential scaling (dE = E x - Ey) for the wafer lot. For each wafer the program 
calculates a translation error in x by generating a random variation around the offset 
and adds that to the offset determined at the reticle change. The same is done for y 
translation, x and y rotation, and x and y scaling. The errors at the centers of the 
fields at all wafer locations k for that wafer are then calculated from

WX k = T x - 9 X y k + E x x k + ss x (14)

WY k = Ty + 9y X k + Ey Yk + SSy (15)

where ss x and ss y are random stage errors, generated at each field separately.

The total overlay error at each field location 1 and wafer location k is then calculated 
as the sum

VX kl = DX] + WX k (16) 

VY kl = DY] + WY k (17)

For each wafer the VX k ] and VY k ] form two matrices. In order for a field to be considered 
good, the corresponding rows in VX k "| and VY k i must contain no errors greater than the 
specification. The computer sorts through the matrices to find bad fields. It also 
calculates the mean x and y errors and x and y standard deviations for all matrices. 
Alignment is repeated as often as chosen. In many of the computer runs considered here, 
10 wafers are aligned before the next reticle change.

Once the lot of wafers is finished, the computer changes the reticle again and repeats 
the procedure described above. After the computer runs through all the reticle changes 
requested, it then calculates the overall statistics for the run, including the mean and 
standard deviations in x and y for the entire distribution and the percentage good 
fields.

It is an easy modification to the program to simulate the behavior of steppers which 
employ field by field alignment rather than global alignment. In this case scaling, 
orthogonality, and random stage errors are set to zero. Translation a 1 and, if 
appropriate, die rotational alignment errors are generated at each wafer location k.

The program described here does not calculate nonlinear errors due to trapezoid, or due 
to third or fifth order distortion. Nonlinear intrafield errors are lumped together as 
unchanging signatures of lenses, and are characterized through the DX and DY input files. 
This is not an altogether justifiable assumption since trapezoid errors can change and be 
adjusted. It has also been shown that illuminator defocus can lead to third order 
intrafield errors which mimic true lens distortionlO. However, these errors are assumed 
to be quite small in comparison with the others considered here. It is certainly possible 
to continue the analysis to cover the case of time varying nonlinear intrafield errors.

As an example of the use of OVS, two different types of 5X reduction wafer stepper were 
simulated. The first type uses off-axis global alignment and is uncompensated for 
magnification changes as a function of barometric pressure. The second type represents a 
stepper with through the lens alignment, barometric compensation, and the ability to 
adjust magnification to match wafer expansion due to processing. Global alignment is also 
used on this type stepper. In this example, single stepper performance is simulated by 
assuming that all intrafield errors except reticle rotation, magnification, and reticle 
stacking errors are zero.

Table 2 lists the input parameters for the two simulations. Table 3 lists the percentage 
good fields found at various overlay tolerances and the equivalent X + 3 sigma values. 
Figure 7 is a plot of good fields percentage versus the overlay design rule.
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Table 2 - Characteristic Component Overlay Errors

Interfield Errors Units

pm
pm

ppm
ppm
ppm
ppm

Stepper 1 Stepper 2

Translation offset sigma
Translation sigma around offset
Symmetrical expansion offset sigma
Asymmetrical expansion offset sigma
Expansion sigma around offset
Wafer rotation offset sigma

.07

.07
1.0
0.5
1.0
1.0

.03

.03
0.5
0.5
0.5
0.5

Orthogonality offset sigma ppm 0.5 0.5
Rotation sigma around offset ppm 1.5 0.5
Stage precision sigma um .04 .03

Intrafield Errors

Magnification sigma around offset ppm 8.0 3.0
Reticle rotation sigma around offset ppm 4.0 3.0
Reticle stacking error sigma (@ 1 /5X) um .02 .02

Offset sigma refers to run to run variation of the mean. Sigma around the offset refers
to variation within the run. In the simulation a run is defined as the number of wafers
aligned before the next reticle change.

Design Rule

Table 3 - Overlay Simulation Results

% Good Fields:Type 1 % Good Fields:Type 2
(micron) Mean Std. Dev. Mean Std. Dev.

.05 0.1 0.1 1.7 2.5

.10 18.1 11.1 65.9 14.2

.15 21.7 14.5 90.5 7.9

.20 49.7 18.1 98.4 2.6

.25 79.7 13.2 99.8 0.6

.30 87.7 11.9 99.9 0.1

.35 95.1 6.7 100.0 0.0

.40 97.5 3.2

.45 98.9 2.1

.50 99.7 0.4

.55 99.9 0.1

.60 100.0 0.0

X + 3 sigma calculated 0.477 0.228
for all data (micron)

Assumes 9 points per field, 14 mm square field size, 9 points per wafer, 150 mm wafer,
reticle change every 10 wafers, 100 reticle changes. This gives 81,000 data points per
axis and 9000 total fields.

OVS was used to estimate the type of control necessary for individual component errors in
order to reach overlay design rules commensurate with 0.5 um minimum feature size. It is
generally agreed that overlay must be in the 0.1 to 0.15 pm, 3 sigma range for 0.5 micron
lithography.

First considered is a stepper using global alignment. The input error components used for
the simulation are listed in Table 4. The first column in Table 5 lists the good fields
percentage and the mean plus 3 sigma for the distribution of all errors for this stepper.
The same number of simulation runs and locations as in the previous example were used.
99.85% of all fields meet the 0.1 um requirement. Note the very high precision necessary
for all the component errors, better than is currently available on any stepper system.
In particular translation error control to 0.021 um, 3 sigma, is about 3 to 4 times
better than any reported and stage error control to 0.03 um, 3 sigma, is about 2 to 3

times better. Mask error control of 0.045 pm, 3 sigma, is only possible for reduction
reticles. Substantial improvements are necessary in order to reach 0.1 um single stepper
overlay if global alignment is used.
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Table 2 - Characteristic Component Overlay Errors 

Interfield Errors Units Stepper 1 Stepper 2

Translation offset sigma urn
Translation sigma around offset urn
Symmetrical expansion offset sigma ppm
Asymmetrical expansion offset sigma ppm
Expansion sigma around offset ppm
Wafer rotation offset sigma ppm
Orthogonality offset sigma ppm
Rotation sigma around offset ppm
Stage precis ion sigma urn

Intrafield Errors

Magnification sigma around offset ppm
Reticle rotation sigma around offset ppm
Reticle stacking error sigma (@ 1/5X) urn

.07

.07
1.0
0.5
1.0
1.0
0.5
1.5
.04

.03

.03
0.5
0.5
0.5
0.5
0.5
0.5
.03

8.0 
4.0 
.02

3.0 
3.0 
.02

Offset sigma refers to run to run variation of the mean. Sigma around the offset refers 
to variation within the run. In the simulation a run is defined as the number of wafers 
aligned before the next reticle change.

Table 3 - Overlay Simulation Results

Design Rule 
(micron)

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60

% Good Fie1ds:Type 1 
Mean Std. Dev.

% Good Fie1ds:T.ype 2 
Mean Std. Dev.

0, 
18. 
21, 
49, 
79, 
87, 
95,
97.
98.
99.
99.9

100.0

0.1
11.1
14.5
18.1
13.2
11.9
6.7
3.2
2.1
0.4
0.1
0.0

1, 
65, 
90,
98.4
99.8
99.9

100.0

2.5 
14.2 
7.9 
2.6 
0.6 
0.1 
0.0

X + 3 sigma calculated 
for all data (micron)

0.477 0.228

Assumes 9 points per field, 14 mm square field size, 9 points per wafer, 150 mm wafer, 
reticle change every 10 wafers, 100 reticle changes. This gives 81,000 data points per 
axis and 9000 total fields.

OVS was used to estimate the type of control necessary for individual component errors in 
order to reach overlay design rules commensurate with 0.5 urn minimum feature size. It is 
generally agreed that overlay must be in the 0.1 to 0.15 urn, 3 sigma range for 0.5 micron 
1i thography.

First considered is a stepper using global alignment. The input error components used for 
the simulation are listed in Table 4. The first column in Table 5 lists the good fields 
percentage and the mean plus 3 sigma for the distribution of all errors for this stepper. 
The same number of simulation runs and locations as in the previous example were used. 
99.85% of all fields meet the 0.1 urn requirement. Note the very high precision necessary 
for all the component errors, better than is currently available on any stepper system. 
In particular translation error control to 0.021 urn, 3 sigma, is about 3 to 4 times 
better than any reported and stage error control to 0.03 urn, 3 sigma, is about 2 to 3 
times better. Mask error control of 0.045 urn, 3 sigma, is only possible for reduction 
reticles. Substantial improvements are necessary in order to reach 0.1 urn single stepper 
overlay if global alignment is used.
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Table 4 - Characteristic Component Overlay Errors; 0.1 um Stepper

F X F

Interfield Errors Units
Global
Stepper Stepper

Translation offset sigma pm 0.005 0.015
Translation sigma around offset pm 0.005 0.015
Symmetrical expansion offset sigma ppm 0.25 0

Asymmetrical expansion offset sigma ppm 0.25 0

Expansion sigma around offset ppm 0.25 0

Wafer rotation offset sigma ppm 0.25 0

Orthogonality offset sigma ppm 0.25 0

Rotation sigma around offset ppm 0.25 0

Stage precision sigma pm 0.01 0

Intrafield Errors

Magnification sigma around offset ppm 1.0 2.0
Reticle rotation sigma around offset ppm 1.0 2.0
Reticle stacking error sigma (@ 1 /5X) pm 0.015 0.015

Table 5 - Overlay Simulation Results; 0.5 Micron Stepper
Global Alignment

Design
Overlay Single Stepper Matched Steppers

Rule % Good Fields 0.05 um Distortion
(micron) Mean Std. Dev. Mean Std. Dev.

.025 1.01 2.95 0.00 0.00

.050 78.08 14.04 2.4.54 17.91

.075 97.33 4.48 65.15 20.86

.100 99.85 0.45 91.56 9.05

.125 100.00 0.00 98.86 1.85

.150 100.00 0.00 99.79 0.57

.175 100.00 0.00 100.00 0.00

X + 3 sigma calculated 0.092 0.140
for all data (micron)

OVS was then run for the 0.1 micron system to simulate matching between two systems which
have a relative maximum intrafield error of 0.05 micron in both the x and y axes. Figure
8 shows the good fields percentage versus the overlay design rule for a single machine
and matched steppers.

Note from the data listed in Table 5 that X + 3 sigma for the matched steppers is almost
exactly the relative distortion error of 0.05 pm plus the X + 3 sigma determined for the
single stepper (0.092 + 0.05 = 0.142 pm, as opposed to the simulation result of 0.140
pm). If the root sum square is taken the result is 0.105 pm. This demonstrates that it is
incorrect to root sum square a systematic error such as distortion with random alignment
errors to arrive at a total overlay budget, because doing so underestimates the true
result, as is argued in reference (1).

Next considered is a stepper working in the field by field (FXF) alignment mode. The same
field and wafer sizes, and number of points sampled are used. It is assumed that the
stepper has a mechanism to adjust magnification to fit symmetrical wafer expansion
perfectly, and that asymmetrical expansion is not present. In this case, errors due to
wafer rotation, orthogonality, and stage error can be set to zero. The input parameters
are listed in Table 5 and the simulation results are given in Table 6. Again it is found
that the systematic distortion error adds directly to the result for single machines to
arrive at the mean plus 3 sigma total overlay. Figure 9 shows the good fields percentage
versus overlay for the FXF case.

The simulation results show that it's possible to relax the alignment error control by
about three fold and the reduction error control by two if FXF alignment is used rather
than global to reach 0.15 pm total overlay for mixed steppers. The level of control
necessary for global alignment seems quite difficult to reach while that for FXF seems
possible. The difficulty in employing FXF is usually reduced productivity. In order to
achieve reasonable throughput rates, alignment acquisition times have to be quite small
at each field. In addition, field alignment targets are typically much smaller than
global targets because of the limited real estate available in scribe lines or in the
chips themselves. Thus the signal is usually not as strong as with a large global target.
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Table 4 - Characteristic Component Overlay Errors; 0.1 urn Stepper 

Interfield Errors Units

Translation offset sigma 
Translation sigma around offset 
Symmetrical expansion offset sigma 
Asymmetrical expansion offset sigma 
Expansion sigma around offset 
Wafer rotation offset sigma 
Orthogonality offset sigma 
Rotation sigma around offset 
Stage precision sigma

Intrafield Errors

Magnification sigma around offset 
Reticle rotation sigma around offset 
Reticle stacking error sigma (@ 1/5X)

urn
ppm
ppm
ppm
ppm
ppm
ppm
urn

ppm 
ppm 
urn

Global 
Stepper

0.005
0.005
0.25
0.25
0.25
0.25
0.25
0.25
0.01

1.0
1.0
0.015

0.015
0.015
0
0
0
0
0
0
0

2.0
2.0
0.015

Table 5 - Overlay Simulation Results; 0.5 Micron Stepper
Global Alignment

Over!ay 
Design Rule 
(micron)

.025

.050

.075

.100

.125

.150

.175

X + 3 sigma calculated 
for all data (micron)

Single
% Good
Mean

1.01
78.08
97.33
99.85

100.00
100.00
100.00

Stepper
Fields
Std. Dev.

2.95
14.04
4.48
0.45
0.00
0.00
0.00

Matched Steppers 
0.05 urn Distortion
Mean

0.00
24.54
65.15
91.56
98.86
99.79

100.00

Std. Dev.

0.00
17.91
20.86
9.05
1.85
0.57
0.00

0.092 0.140

OVS was then run for the 0.1 micron system to simulate matching between two systems which 
have a relative maximum intrafield error of 0.05 micron in both the x and y axes. Figure 
8 shows the good fields percentage versus the overlay design rule for a single machine 
and matched steppers.

Note from the data listed in Table 5 that X + 3 sigma for Jthe matched steppers is almost 
exactly the relative distortion error of 0.05 urn plus the X + 3 sigma determined for the 
single stepper (0.092 + 0.05 = 0.142 urn, as opposed to the simulation result of 0.140 
urn). If the root sum square is taken the result is 0.105 urn. This demonstrates that it is 
incorrect to root sum square a systematic error such as distortion with random alignment 
errors to arrive at a total overlay budget, because doing so underestimates the true 
result, as is argued in reference (1).

Next considered is a stepper working in the field by field (FXF) alignment mode. The same 
field and wafer sizes, and number of points sampled are used. It is assumed that the 
stepper has a mechanism to adjust magnification to fit symmetrical wafer expansion 
perfectly, and that asymmetrical expansion is not present. In this case, errors due to 
wafer rotation, orthogonality, and stage error can be set to zero. The input parameters 
are listed in Table 5 and the simulation results are given in Table 6. Again it is found 
that the systematic distortion error adds directly to the result for single machines to 
arrive at the mean plus 3 sigma total overlay. Figure 9 shows the good fields percentage 
versus overlay for the FXF case.

The simulation results show that it's possible to relax the alignment error control by 
about three fold and the reduction error control by two if FXF alignment is used rather 
than global to reach 0.15 urn total overlay for mixed steppers. The level of control 
necessary for global alignment seems quite difficult to reach while that for FXF seems 
possible. The difficulty in employing FXF is usually reduced productivity. In order to 
achieve reasonable throughput rates, alignment acquisition times have to be quite small 
at each field. In addition, field alignment targets are typically much smaller than 
global targets because of the limited real estate available in scribe lines or in the 
chips themselves. Thus the signal is usually not as strong as with a large global target.
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Table 6 - Overlay Simulation Results; 0.5 Micron Stepper
Field by Field Alignment

Single Stepper
% Good Fields
Mean Std. Dev.

Overlay
Design Rule
(micron)

.025 0.00

.050 73.40

.075 96.10

.100 99.80

.125 100.00

.150 100.00

X + 3 sigma calculated
for all data (micron)

0.00
28.90
13.25
1.41
0.00
0.00

Matched Steppers
0.05 pm Distortion
Mean Std. Dev.

0.00
0.00

53.20
90.00
98.30

100.00

0.095 0.144

0.00
0.00

30.46
20.88
1.85
0.00

It is likely that field by field alignment will have to be used to achieve overlay in the
0.1 pm range, but this will require more real estate allotted to targets, more targets
per field in order to allow active magnification, reticle rotation, and trapezoid
control, and faster, more accurate detection and mechanical adjustment schemes than
currently available. In addition, overlay simulation will be necessary to understand in
detail the complex interaction of mask making, stepper, and processing variables.

Non -Gaussian Overlay Distributions

It is commonly claimed by aligner manufacturers that overlay distributions are not
Gaussian, but rather have less data points in the extreme tails of the distribution than
a normal distribution does. The form of a distribution is characterized in statistics as
kurtosis. Kurtosis relates to the tendency for a distribution to have a sharp peak in the
middle and excessive data in the tails as compared with a Gaussian or conversely to be
relatively flat in the middle with little or no tailsll. The coefficient of kurtosis, 92,
characterizes whether a distribution is leptokurtic (containing more data in the tails,
92 > 0), mesokurtic (Gaussian, g2 = 0), or platykurtic (less data in the tails, 92 < 0).
The coefficient of kurtosis, 92, for a sample of n numbers Xl, X2, ..., Xn is calculated

(Xi - X)4

g2 = 3

ns4
(18)

The coefficient of kurtosis is calculated for each simulated set of alignments (i.e., one
reticle change) in OVS. It is found that there is a distribution of 92 values for each
set of error parameters. For example, in the case of the 0.1 pm overlay stepper using
global alignment the distribution of 92 along the x axis for 100 simulated runs is shown
in histogram form in Figure 10a. The mean of the distribution is - 0.144, showing that
indeed that the average run does have a distribution of overlay errors which is more
tightly bunched than a Gaussian. However the distribution of 92 is very wide, with a
standard deviation of 0.294. 22 of 100 runs had positive 92 values. Thus while the
average lot of the 0.1 pm single stepper has a platykurtic distribution of overlay
errors, almost a quarter of the runs can be expected to show leptokurtic behavior.

25

20

15

10

5-

o

DISTRIBUTION OF g2 : SINGLE STEPPER (GLOBAL) DISTRIBUTION OF g2 : MIXED STEPPERS (GLOBAL)

NO SYSTEMATIC INTRAFIELD DISTORTION ERROR

Mean g2 = -0.14
Sigma = 0.29

-1.500 -1.000 -0.500 0.000 0.500
n

25

II20t

15-

10-
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0.05 MICRON RELATIVE INTRAFIELD DISTORTION

Mean g2 = -0.51
Sigma = 0.26

-L----L=d-
1.000 -1.500 -1.000 -0.500 0.000 0.500 1.000

COEFFICIENT OF KURTOSIS : g2 COEFFICIENT OF KURTOSIS : g2

Figure 10a. 92 histogram;global,single machine. Figure 10b. 92 histogram;global, mixed.
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Table 6 - Overlay Simulation Results; 0.5 Micron Stepper 
Field by Field Alignment"

Over 1 ay 
Design Rule 
(mi cron)

.025

.050

.075

.100

.125

.150

Single Stepper 
% Good Fields 
Mean Std. Dev.

Matched Steppers 
0.05 urn Distortion 
Mean Std. Dev.

0.00
73.40
96.10
99.80

100.00
100.00

0.00
28.90
13.25
1.41
0.00
0.00

0.00
0.00

53.20
90.00
98.30

100.00

0.00
0.00

30.46
20.88
1.85
0.00

X + 3 sigma calculated 
for all data (micron)

0.095

It is likely that field by field alignment will have to be used 
0.1 urn range, but this will require more real estate allotted 
per field in order to allow active magnification, reticle 
control, and faster, more accurate detection and mechanical

0.144

to achieve overlay in the 
to targets, more targets 
rotation, and trapezoid 
adjustment schemes than

currently available. In addition, overlay simulation will be necessary to understand in 
detail the complex interaction of mask making, stepper, and processing variables.

Non-Gaussian Overlay Distributions

It is commonly claimed by aligner manufacturers that overlay distributions are not 
Gaussian, but rather have less data points in the extreme tails of the distribution than 
a normal distribution does. The form of a distribution is characterized in statistics as 
kurtosis. Kurtosis relates to the tendency for a distribution to have a sharp peak in the 
middle and excessive data in the tails as compared with a Gaussian or conversely to be 
relatively flat in the middle with little or no tails**. The coefficient of kurtosis, g2, 
characterizes whether a distribution is 1 eptokurtic (containing more data in the tails, 
g2 > 0), mesokurtic (Gaussian, g2 = 0), or piatykurtic (less data in the tails, g2 < 0). 
The coefficient of kurtosis, g2> for a sample of n numbers Xi, X2,    » X n is calculated

92 = - 3 (18)

The coefficient of kurtosis is calculated for each simulated set of alignments (i.e., one 
reticle change) in OVS. It is found that there is a distribution of g2 values for each 
set of error parameters. For example, in the case of the 0.1 jam overlay stepper using 
global alignment the distribution of g2 along the x axis for 100 simulated runs is shown 
in histogram form in Figure lOa. The mean of the distribution is - 0.144, showing that

distribution of overlay errors which is more 
the distribution of g2 is very wide, with a 
runs had positive g2 values. Thus while the 
has a platykurtic distribution of overlay 
expected to show leptokurtic behavior.

indeed that the average run does have a 
tightly bunched than a Gaussian. However 
standard deviation of 0.294. 22 of 100 
average lot of the 0.1 urn single stepper 
errors, almost a quarter of the runs can be
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Figure 10a. g2 histogram;global,single machine. Figure lOb. g2 histogram;global, mixed.
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Table 7 - Coefficient of Kurtosis for Simulator Runs

Single Stepper Matched Steppers
(0.05 pm distortion)

Global -0.14 + 0.29 -0.51 + 0.26

FXF -0.35 + 0.39 -0.62 + 0.42

For the matched stepper case the distribution of 92 values along the x axis is shown in
Figure 10b. Note that the center of the distribution is more shifted to negative 92
values than the previous case where there was no systematic intrafield error. The mean is
- 0.510 and only two of 100 runs showed positive 92 values. The mean and one standard
deviation values for 92 for the global and FXF steppers are listed in Table 7.

These simulation results imply that overlay errors for steppers do not in general yield
Gaussian distributions. However, neither do they always yield distributions which have
less data in the tails than a Gaussian unless systematic errors are of about the same
size as the random errors. The reason for the shift to more platykurtic distributions
with increasing systematic errors is not completely clear. An intuitive argument can be
given. As systematic errors grow larger with respect to the random errors, the overall
distribution of errors begins to be dominated by the systematic errors. In the limit the
error distribution converges with the systematic error distribution which has no
randomness by definition. Thus the error distribution might be expected to be
platykurtic. This is an important area for further analysis.
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Table 7 - Coefficient of Kurtosis for Simulator Runs

Single Stepper

Global -0.14 + 0.29 

FXF -0.35 + 0.39

Matched Steppers 
(0.05 urn distortion)

-0.51 1 0.26

-0.62 + 0.42

For the matched stepper case the distribution of 92 values along the x axis is shown in 
Figure lOb. Note that the center of the distribution is more shifted to negative g^ 
values than the previous case where there was no systematic intrafield error. The mean is 
- 0.510 and only two of 100 runs showed positive g2 values. The mean and one standard 
deviation values for g2 for the global and FXF steppers are listed in Table 7.

These simulation results imply that overlay errors for steppers do not in general yield 
Gaussian distributions. However, neither do they always yield distributions which have 
less data in the tails than a Gaussian unless systematic errors are of about the same 
size as the random errors. The reason for the shift to more platykurtic distributions 
with increasing systematic errors is not completely clear. An intuitive argument can be 
given. As systematic errors grow larger with respect to the random errors, the overall 
distribution of errors begins to be dominated by the systematic errors. In the limit the 
error distribution converges with the systematic error distribution which has no 
randomness by definition. Thus the error distribution might be expected to be 
platykurtic. This is an important area for further analysis.
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