The process of ablation in obsidianus lapis is mainly governed by pulse energy from the laser source and scanning speed. The rate of material ablation is influenced by chemical and physical properties. In this work, laser energy at 1064 nm, has been used for ablation behavior in Q-switch regime. A >40 W, average power Nd:YAG source with pulse energies ranging from 3mJ to nearly 7 mJ, achieved surface damages up to 160 μm of depth. Photo-mechanical ablation in terms of scan speed showed a maximum depth of nearly 500 μm at 130 mm/s. The maximum pulse energy of 12 mJ resulted in ablation of 170 μm depth. Highly efficient ablation in obsidianus lapis for artistic work is an interesting field of application.
Micro Optical Fibre Biosensors (MOFBs) are emerging as one of the most sensitive bio-detection system technologies which do not require of labelling or amplification of the analyte. In these devices, a short region of the fibre core is exposed to the external environment so that the evanescent field can interact with biological species such as cells, proteins, and DNA. In order to increase the sensitivity and selectivity, MOFBs are often used in combination with other optical transduction mechanisms such as changes in refractive index, absorption, fluorescence and surface plasmon resonance. In this work we present the full characteristics, analysis and design of a MOFBs for Flavin and Porphyrin detection.
Obsidianus lapis is a volcanic rock that has been worked into tools for cutting or weaponry by Teotihuacan people for hundreds of years. Currently it is used in jewelry or for house decorative items such as elaborated sculptures. From the physico-chemical properties point of view, obsidianus lapis is considered a glass as its composition is 80% silicon dioxide. In México there are different kinds of obsidianus lapis according to its colour: rainbow, black, brown, red, silver, golden and snowflake. The traditional grinding process for working with obsidianus lapis includes fixed grinders and sandpaper for the polishing process, where the craftsman grinds the rock manually obtaining a variety of shapes. Laser processing of natural stones is a relatively new topic. We propose the use of an Yb3+-doped fibre laser for cutting and ablating obsidianus lapis into spherical, rectangular and oval shapes. By means of a theoretical analysis of roughness and hardness, which affect the different surfaces and final shapes, and considering the changes in material temperature during laser interaction, this work will focus on parameter determination such as: laser fluence, incidence angle, laser average power and peak pulse energy, from the proposed Q-switched fibre laser design. Full optical, hardness and rugosity, initial and final, characterization will be included in the presentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.