Adam F. Leontowich, Andrew Aquila, Francesco Stellato, Richard Bean, Holger Fleckenstein, Mauro Prasciolu, Mengning Liang, Daniel DePonte, Anton Barty, Fenglin Wang, Jakob Andreasson, Janos Hajdu, Henry Chapman, Saša Bajt
A super-polished substrate with an off-axis parabola figure was coated with a Sc/B4C/Cr multilayer. This optic was used to focus pulses of 4.3 nm photons from the Free-electron LASer in Hamburg (FLASH) at normal incidence. Beam imprints were made in poly(methyl methacrylate) to align the optic and to measure the beam profile at the focal plane. The intense interaction resulted in imprints with raised perimeters, surrounded by ablated material extending out several micrometres. These features interfere with the beam profile measurement. The effect of a post-exposure development step on the beam imprints was investigated.
Andrew Martin, Jakob Andreasson, Andrew Aquila, Saša Bajt, Thomas R. Barends, Miriam Barthelmess, Anton Barty, W. Henry Benner, Christoph Bostedt, John Bozek, Phillip Bucksbaum, Carl Caleman, Nicola Coppola, Daniel DePonte, Tomas Ekeberg, Sascha Epp, Benjamin Erk, George Farquar, Holger Fleckenstein, Lutz Foucar, Matthias Frank, Lars Gumprecht, Christina Hampton, Max Hantke, Andreas Hartmann, Elisabeth Hartmann, Robert Hartmann, Stephan Hau-Riege, Günther Hauser, Peter Holl, André Hoemke, Olof Jönsson, Stephan Kassemeyer, Nils Kimmel, Maya Kiskinova, Faton Krasniqi, Jacek Krzywinski, Mengning Liang, Ne-Te Duane Loh, Lukas Lomb, Filipe R. N. Maia, Stefano Marchesini, Marc Messerschmidt, Karol Nass, Duško Odic, Emanuele Pedersoli, Christian Reich, Daniel Rolles, Benedikt Rudek, Artem Rudenko, Carlo Schmidt, Joachim Schultz, M. Marvin Seibert, Robert Shoeman, Raymond Sierra, Heike Soltau, Dmitri Starodub, Jan Steinbrener, Francesco Stellato, Lothar Strüder, Martin Svenda, Herbert Tobias, Joachim Ullrich, Georg Weidenspointner, Daniel Westphal, Thomas White, Garth Williams, Janos Hajdu, Ilme Schlichting, Michael Bogan, Henry Chapman
Results of coherent diffractive imaging experiments performed with soft X-rays (1-2 keV) at the Linac Coherent
Light Source are presented. Both organic and inorganic nano-sized objects were injected into the XFEL beam
as an aerosol focused with an aerodynamic lens. The high intensity and femtosecond duration of X-ray pulses
produced by the Linac Coherent Light Source allow structural information to be recorded by X-ray diffraction
before the particle is destroyed. Images were formed by using iterative methods to phase single shot diffraction
patterns. Strategies for improving the reconstruction methods have been developed. This technique opens
up exciting opportunities for biological imaging, allowing structure determination without freezing, staining or
crystallization.
Determining the printability of substrate defects beneath the extreme ultraviolet (EUV) reflecting multilayer stack is an
important issue in EUVL lithography. Several simulation studies have been performed in the past to determine the
tolerable defect size on EUV mask blank substrates but the industry still has no exact specification based on real
printability tests. Therefore, it is imperative to experimentally determine the printability of small defects on a mask
blanks that are caused by substrate defects using direct printing of programmed substrate defect in an EUV exposure
tool.
SEMATECH fabricated bump type program defect masks using standard electron beam lithography and performed
printing tests with the masks using an EUV exposure tool. Defect images were also captured using SEMATECH's
Berkeley Actinic Imaging Tool in order to compare aerial defect images with secondary electron microscope images
from exposed wafers.
In this paper, a comprehensive understanding of substrate defect printability will be presented and printability
specifications of EUV mask substrate defects will be discussed.
The effort to produce defect-free mask blanks for EUV lithography relies on increasing the detection sensitivity of
advanced mask inspection tools, operating at several wavelengths. We describe the unique measurement capabilities of a
prototype actinic (EUV wavelength) microscope that is capable of detecting small defects and reflectivity changes that
occur on the scale of microns to nanometers. The defects present in EUV masks can appear in many well-known forms:
as particles that cause amplitude or phase variations in the reflected field; as surface contamination that reduces reflectivity
and contrast; and as damage from inspection and use that reduces the reflectivity of the multilayer coating. This paper
presents an overview of several topics where scanning actinic inspection makes a unique contribution to EUVL research.
We describe the role of actinic scanning inspection in defect repair studies, observations of laser damage, actinic inspection
following scanning electron microscopy, and the detection of both native and programmed defects.
The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a dual-mode, scanning and imaging extreme-ultraviolet (EUV) microscope designed for pre-commercial EUV mask research. Dramatic improvements in image quality have been made by the replacement of several critical optical elements, and the introduction of scanning illumination to im-prove uniformity and contrast. We report high quality actinic EUV mask imaging with resolutions as low as 100-nm half-pitch, (20-nm, 5× wafer equivalent size), and an assessment of the imaging performance based on several metrics. Modulation transfer function (MTF) measurements show high contrast imaging for features sizes close to the diffraction-limit. An investigation of the illumination coherence shows that AIT imaging is much more coherent than previously anticipated, with σ below 0.2. Flare measurements with several line-widths show a flare contribution on the order of 2-3% relative intensity in dark regions above the 1.3% absorber reflectivity on the test mask used for these experiments. Astigmatism coupled with focal plane tilt are the dominant aberrations we have observed. The AIT routinely records 250-350 high-quality images in numerous through-focus series per 8-hour shift. Typical exposure times range from 0.5 seconds during alignment, to approximately 20 seconds for high-resolution images.
We report the actinic (EUV wavelength) and non-actinic inspection of a multilayer-coated mask blank containing an
array of open-field defect repair sites created in different ways. The comparison of actinic brightfield and darkfield
measurements shows the importance of having both local reflectivity and scattering measurements. Although effective
mask blank repair capabilities have not been adequately demonstrated, the data acquired in this experiment have been
very instructive. Correlation with non-actinic inspection methods shows the difficulty of establishing a successful predictive
model of the EUV response without EUV cross-comparison. The defect repair sites were also evaluated with SEM,
AFM, and 488-nm-wavelength confocal microscopy. The data raise important questions about mask quality specifications
and the requirements of future commercial actinic inspection tools.
The production of defect-free mask blanks remains a key challenge for EUV lithography. Mask-blank inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. We have recently observed and here report the identification of bump-type buried substrate defects, that were below the detection limit of a non-actinic (i.e. non-EUV) inspection tool. Presently, the occurrence of pit-type defects, their printability, and their detectability with actinic techniques and non-actinic commercial tools, has become a significant concern.
We believe that the most successful strategy for the development of effective non-actinic mask inspection tools will involve the careful cross-correlation with actinic inspection and lithographic printing. In this way, the true efficacy of prototype inspection tools now under development can be studied quantitatively against relevant benchmarks. To this end we have developed a dual-mode actinic mask inspection system capable of scanning mask blanks for defects (with simultaneous EUV bright-field and dark-field detection) and imaging those same defects with a zoneplate microscope that matches or exceeds the resolution of EUV steppers.
Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-Å and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.
To qualify the performance of non-actinic inspection tools, a novel EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron facility at Lawrence Berkeley National Laboratory. Similar to the older generation actinic mask inspection tool1, the new system can operate in scanning mode, when mask blanks are scanned for defects using 13.5-nm in-band radiation to identify and map all locations on the mask that scatter a significant amount of EUV light. By modifying and optimizing beamline optics (11.3.2 at ALS) and replacing K-B focusing mirrors with a high quality Schwarzschild illuminator, the new system achieves an order of magnitude improvement on in-band EUV flux density at the mask, enabling faster scanning speed and higher sensitivity to smaller defects. Moreover, the system can also operate in imaging mode, when it becomes a zone-plate-based full-field EUV microscope with spatial resolution better than 100 nm. The microscope utilizes an off-axis setup, making it possible to obtain bright field images over a field-of-view of 5x5 um2.
The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate.
There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects.
To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects.
The development of defect-free reticle blanks is an important challenge facing the commercialization of extreme ultraviolet lithography (EUVL). The basis of an EUVL reticle are mask blanks consisting of a substrate and a reflective Mo/Si multilayer. Defects on the substrate or defects introduced during multilayer deposition can result in critical phase and amplitude defects. Amplitude- or phase-defect repair techniques are being developed with the goal to repair many of these defects. In this paper we discuss the selection of a capping layer for amplitude-defect repair, and report on experimental results of the reflectance variation over the amplitude-defect repair zone for different capping layers. Our results suggest that carbon and silicon carbide are the leading candidates for capping layer materials. We further performed a quantitative assessment of the yield improvement due to defect repair. We found that amplitude- and phase-defect repair have the potential to significantly improve mask blank yield, and that yield can be maximized by increasing the number of Mo/Si bilayers.
Carbon deposition in EUVL is known to occur when optical surfaces in a hydrocarbon environment are exposed to EUV light. Carbon contamination on EUV optical elements affects both the absorption and phase of the reflected light. Because the carbon deposition alters the phase structure of the reflected EUV light it effectively alters the figure of these optics and, thus, the aberrations as well. Absorption by deposited carbon not only reduces throughput but also leads to apodisation of the pupil, which in turn affects imaging performance.
The high volume inspection equipment currently available to support development of EUV blanks is non-actinic. The same is anticipated for patterned EUV mask inspection. Once potential defects are identified and located by such non-actinic inspection techniques, it is essential to have instrumentation to perform detailed characterization, and if repairs are performed, re-evaluation. The ultimate metric for the acceptance or rejection of a mask due to a defect, is the wafer level impact. Thus, measuring the aerial image for the site under question is required. An EUV Aerial Image Microscope (“AIM”) similar to the current AIM tools for 248nm and 193nm exposure wavelength is the natural solution for this task. Due to the complicated manufacturing process of EUV blanks, AIM measurements might also be beneficial to accurately assessing the severity of a blank defect. This is an additional application for an EUV AIM as compared to today’s use.
In recognition of the critical role of an EUV AIM for the successful implementation of EUV blank and mask supply, International SEMATECH initiated this design study with the purpose to define the technical requirements for accurately simulating EUV scanner performance, demonstrating the feasibility to meet these requirements and to explore various technical approaches to building an EUV AIM tool.
EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. Small defects in this thin film coating can significantly alter the reflected field and introduce defects in the printed image. Ideally one would want to produce defect-free mask blanks; however, this may be very difficult to achieve in practice. One practical way to increase the yield of mask blanks is to effectively repair multilayer defects, and to this effect we present two complementary defect repair strategies for use on multilayer-coated EUVL mask blanks. A defect is any area on the mask which causes unwanted variations in EUV dose in the aerial image obtained in a printing tool, and defect repair is correspondingly defined as any strategy that renders a defect unprintable during exposure. The term defect mitigation can be adopted to describe any strategy which renders a critical defect non-critical when printed, and in this regard a non-critical defect is one that does not adversely affect device function. Defects in the patterned absorber layer consist of regions where metal, typically chrome, is unintentionally added or removed from the pattern leading to errors in the reflected field. There currently exists a mature technology based on ion beam milling and ion beam assisted deposition for repairing defects in the absorber layer of transmission lithography masks, and it is reasonable to expect that these this technology will be extended to the repair of absorber defects in EUVL masks . However, techniques designed for the repair of absorber layers can not be directly applied to the repair of defects in the mask blank, and in particular the multilayer film. In this paper we present for the first time a new technique for the repair of amplitude defects as well as recent results on the repair of phase defects.
Future extreme ultraviolet lithography (EUVL) steppers will, in all likelihood, have six-mirror projection cameras. To operate at the diffraction limit over an acceptable depth of focus each aspheric mirror will have to be fabricated with an absolute figure accuracy approaching 100pm rms. We are currently developing visible light interferometry to meet this need based on modifications of our present phase shifting diffraction interferometry (PSDI) methodology where we achieved an absolute accuracy of 250pm. The basic PSDI approach has been further simplified, using lensless imaging based on computational diffractive back-propagation, to eliminate auxiliary optics that typically limit measurement accuracy. Small remaining error sources, related to geometric positioning, CCD camera pixel spacing and laser wavelength, have been modeled and measured. Using these results we have estimated the total system error for measuring off-axis aspheric EUVL mirrors with this new approach to interferometry.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.