Laser-induced damage threshold decreases when an optic is exposed to multiple laser pulses. In the femtosecond regime, the fatigue of dielectric materials is attributed to incubation of laser-induced lattice states. The goal of this study is to investigate sub-critical damage in a quantitative manner so that the lifetime of single-layer dielectric coatings could be predicted for femtosecond applications. Sub-critical damage was found to consist of localized nanogrooves (100 nm wide, 1-2 um long) oriented perpendicularly to laser polarization. Simple fatigue model was used to simulate fatigue curves which were in good agreement with experimental S-on-1 data for the catastrophic damage.
So called “optical fatigue effect” of transparent optical materials is triggered by repetitive laser pulses. It first appears in form of gradual modification of optical properties of the element (change in refractive index or absorption) and eventually leads to formation of catastrophic damage. As this phenomenon can be governed by distinct underlying physical processes it is also sensitive to laser irradiation conditions, intrinsic material and environmental properties, thus it is not always deterministic and therefore hardly predictable. There exist models of optical fatigue that relate absorbed pulse energy, dynamics of lattice deformation, reduced mechanical strength and heat accumulation to predict optical damage, however many quantitative features of such materials as well as scaling laws of irradiation for such models remain unknown. In order to address this issue appropriate set of experimental data is needed. Thus, well known transparent material - fused quartz - was investigated in bulk by using in situ quantitative tool, namely time-resolved digital holographic microscopy. Optical materials response was investigated by optically probing excited material at different time delays. Various dependencies were investigated by changing pump irradiation conditions as a function of incident laser pulses.
Benchmarking optical quality of transparent materials is of vital importance to high power laser optics. Herewith we propose new nondestructive technique suited to quantify atomic impurities, based on spectrometry of laser induced-filament luminescence. Various laser host materials, of different vendors (sapphire, YAG and KGW) were investigated. The intensity and decay times of luminescence indicated significant differences in impurities among samples. To validate the proposed technique, filament induced luminescence results were compared to cathodoluminescence and x-rays luminescence results. Good agreement between sources was found. Finally, the effect of impurities on optical fatigue was evaluated by laser damage testing of the samples.
In order to correlate laser damaging fluence with the pertinent theoretical considerations, there were many attempts in the past to establish reliable damage predicting criterion. Such criterion then could be used to estimate laser fluence that triggers the damage process in various optical materials. For example, reaching of materials critical property such as - temperature (melting point), - thermoelastic stress, - electron density are good examples. On the other hand, however, it is already clear that damage mechanism is irradiation condition (wavelengths, pulse duration) and material property dependent. There are no physical restrictions of causing damage by reaching critical stress without critical electron density and vice versa. Accordingly, total absorbed energy or absorbed energy density is likely more suited candidate of universal damage criteria as a common denominator for all critical processes. To our best knowledge, it was never estimated experimentally in the vicinity of the damaging fluence of optical materials. In this study, we present a novel approach based on pump- probe digital holographic microscopy that enables quantitative assessment of absorbed energy during the damage process in transparent dielectric media. By using this method, a case study is conducted in fused silica glass with sharply focused infrared laser pulses at 1030 nm central wavelength and 450 fs pulse duration. By doing so we were able to estimate energy fraction of the incident pulse that is needed to trigger optical damage.
The decrease of laser-induced damage threshold (LIDT) when exposed with high number of laser pulses is a well-known phenomenon in dielectrics. In the femtosecond regime this fatigue is usually attributed to the accumulation of laser-induced lattice defects. Little is known about the accumulation mechanisms in oxides used for dielectric coatings. In this work, S-on-1 laser-induced damage threshold test was combined with time-resolved digital holography in order to investigate laser-induced lattice defects in Nb2O5 single layer. The results provided insights into the current understanding of accumulation of laser-induced defects.
A special dielectric edge filter extremely sensitive to any change in refractive indices, layer thicknesses and angle of incidence has been investigated using holographic pump-probe measurements at different intensity values. Different physical processes overlapping in time were found to occur, namely the Kerr effect, free- electron generation and their subsequent trapping. A numerical model was used to reproduce the experimental results and decouple these processes.
Time resolved digital holography (TRDH) is a versatile tool that provides valuable insights into the dynamics of femtosecond damage initiation by providing spatiotemporal information of excited material. However, interpreting of TRDH data in thin film dielectric coatings is rather complicated without appropriate theoretical models that are able to correctly describe underlying nature of damage formation. Therefore, a model based on finite difference time domain (FDTD) method with complete Keldysh theory for nonlinear ionization of atoms and multiple rate equation (MRE) method for conduction band electrons was developed. The model was used to reproduce both temporal and spatial characteristics of TRDH experiment performed on Ta2O5 dielectric coating. Fitted material parameters were then applied to indirectly estimate LIDT of the coating.
Time-resolved investigations of laser-matter interaction processes in dielectric coatings and bulk silica leading to laserinduced damage were performed with high temporal and spatial resolution. Distinct excitation geometries were used to study different aspects of laser matter interaction. Samples were irradiated at the pump fluence levels below and above their single shot laser-induced damage thresholds. The obtained results provide new insights about the sequence of interdependent processes. The fundamental differences between the so called 1-on-1 and S-on-1 damage morphologies are observed and discussed. New data of numerical simulations revealing the nonlinear properties of optical thin films are presented. Increased visibility in time resolved damage detection as well as observation of coherent oscillations in measured signals are introduced and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.