All optical photoacoustic tomography (PAT) using a planar Fabry-Perot interferometer polymer film sensor has been demonstrated for in vivo human palm imaging with an imaging penetration depth of 5 mm. The relatively larger vessels in the superficial plexus and the vessels in the dermal plexus are visible in PAT. However, due to both resolution and sensitivity limits, all optical PAT cannot reveal the smaller vessels such as capillary loops and venules. Melanin absorption also sometimes causes difficulties in PAT to resolve vessels. Optical coherence tomography (OCT) based angiography, on the other hand, has been proven suitable for microvasculature visualization in the first couple millimeters in human. In our work, we combine an all optical PAT system with an OCT system featuring a phase stable akinetic swept source. This multimodal PAT/OCT/OCT-angiography system provides us co-registered human skin vasculature information as well as the structural information of cutaneous. The scanning units of the sub-systems are assembled into one probe, which is then mounted onto a portable rack. The probe and rack design gives six degrees of freedom, allowing the multimodal optical imaging probe to access nearly all regions of human body. Utilizing this probe, we perform imaging on patients with various skin disorders as well as on healthy controls. Fused PAT/OCT-angiography volume shows the complete blood vessel network in human skin, which is further embedded in the morphology provided by OCT. A comparison between the results from the disordered regions and the normal regions demonstrates the clinical translational value of this multimodal optical imaging system in dermatology.
Studies have proven the relationship between cutaneous vasculature abnormalities and dermatological disorders, but to image vasculature noninvasively in vivo, advanced optical imaging techniques are required. In this study, we imaged a palm of a healthy volunteer and three subjects with cutaneous abnormalities with photoacoustic tomography (PAT) and optical coherence tomography with angiography extension (OCTA). Capillaries in the papillary dermis that are too small to be discerned with PAT are visualized with OCTA. From our results, we speculate that the PA signal from the palm is mostly from hemoglobin in capillaries rather than melanin, knowing that melanin concentration in volar skin is significantly smaller than that in other areas of the skin. We present for the first time OCTA images of capillaries along with the PAT images of the deeper vessels, demonstrating the complementary effective imaging depth range and the visualization capabilities of PAT and OCTA for imaging human skin in vivo. The proposed imaging system in this study could significantly improve treatment monitoring of dermatological diseases associated with cutaneous vasculature abnormalities.
The combination of photoacoustic tomography (PAT) with optical coherence tomography (OCT) has seen steady progress over the past few years. With the benchtop and semi-benchtop configurations, preclinical and clinical results have been demonstrated, paving the way for wider applications using dual modality PAT/OCT systems. However, as for the most updated semi-benchtop PAT/OCT system which employs a Fabry-Perot polymer film sensor, it is restricted to only human palm imaging due to the limited flexibility of the probe. The passband limit of the polymer film sensor further restricts the OCT source selection and reduces the sensitivity of the combined OCT system. To tackle these issues, we developed an articulated PAT/OCT probe for both preclinical and clinical applications. In the probe design, the sample arm of OCT sub-system and the interrogation part of the PAT sub-system are integrated into one compact unit. The polymer film sensor has a quick release function so that before each OCT scan, the sensor can be taken off to avoid the sensitivity drop and artefacts in OCT. The holding mechanism of the sensor is also more compact compared to previous designs, permitting access to uneven surfaces of the subjects. With the help of the articulated probe and a patient chair, we are able to perform co-registered imaging on human subjects on both upper and lower extremities while they are at rest positions. An increase in performance characteristics is also achieved. Patients with skin diseases are currently being recruited to test its clinical feasibility.
To obtain the initial pressure from the collected data on a planar sensor arrangement in photoacoustic tomography, there exists an exact analytic frequency-domain reconstruction formula. An efficient realization of this formula needs to cope with the evaluation of the data’s Fourier transform on a nonequispaced mesh. We use the nonuniform fast Fourier transform to handle this issue and show its feasibility in three-dimensional experiments with real and synthetic data. This is done in comparison to the standard approach that uses linear, polynomial, or nearest neighbor interpolation. Moreover, we investigate the effect and the utility of flexible sensor location to make optimal use of a limited number of sensor points. The computational realization is accomplished by the use of a multidimensional nonuniform fast Fourier algorithm, where nonuniform data sampling is performed both in frequency and spatial domain. Examples with synthetic and real data show that both approaches improve image quality.
Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.
Elastography is implemented by applying a mechanical force to a specimen and visualizing the resulting displacement. As a basis of elastographic imaging typically ultrasound, optical coherence tomography or magnetic resonance imaging are used. Photoacoustics has not been viewed as a primary imaging modality for elastography, but only as a complementary method to enhance the contrast in ultrasound elastography. The reason is that photoacoustics is considered speckle free [3], which hinders application of speckle tracking algorithms. However, while conventional ultrasound only uses a single frequency, photoacoustics utilizes a broad frequency spectrum. We are therefore able to generate artificial texture by using a frequency band limited part of the recorded data. In this work we try to assess the applicability of this technique to photoacoustic tomography. We use Agar phantoms with predefined Young's moduli and laterally apply a 50μm static compression. Pre- and post compression data are recorded via a Fabry Pérot interferometer planar sensor setup and reconstructed via a non-uniform-FFT reconstruction algorithm. A displacement vector field, between pre- and post compressed data is then determined via optical flow algorithms. While the implementation of texture generation during post processing reduces image quality overall, it turns out that it improves the detection of moving patterns and is therefore better suited for elastography.
Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors’ knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.