In order to realize accurate detection for small dim infrared maritime target, this paper proposes a target detection algorithm based on local peak detection and pipeline-filtering. This method firstly extracts some suspected targets through local peak detection and removes most of non-target peaks with self-adaptive threshold process. And then pipeline-filtering is used to eliminate residual interferences so that only real target can be retained. The experiment results prove that this method has high performance on target detection, and its missing alarm rate and false alarm rate can basically meet practical requirements.
The mobile pipeline-filtering algorithm is a real-time algorithm that performs well in detecting small dim targets, but it is particularly sensitive to interframe vibration of sequence images. When searching for small dim targets at sea based on an infrared imaging system, irregular and random vibration of the airborne imaging platform causes huge interference problems for the mobile pipeline-filtering. This paper puts forward a pipeline-filtering algorithm that has a good performance on self-adaptive anti-vibration. In the block matching method using the normalized cross-correlations coefficient (NCC), the interframe vibration of sequence images is acquired in real time and used to correct coordinates of the single-frame detection results, and then the corrected detection results are used to complete the mobile pipelinefiltering. Experimental results show that the algorithm can overcome the problem of interframe vibration of sequence images, thus realizing accurate detection of small dim maritime targets.
When searching for small targets at sea based on an infrared imaging system, irregular and random vibration of the airborne imaging platform causes intense interference for the pipeline-filtering, which is an algorithm that performs well in detecting small targets but is particularly sensitive to interframe vibrations of sequence images. This paper puts forward a pipeline-filtering algorithm that has a good performance on self-adaptive antivibration. In the block matching method that combines the normalized cross-correlations coefficient with the normalized mutual information, the interframe vibration of sequence images is acquired in real time and used to correct coordinates of the single-frame detection results, and then the corrected detection results are used to complete the pipeline-filtering. In addition, under severe sea conditions, small targets at sea may disappear transiently, leading to missing detection. This algorithm is also able to resolve this problem. Experimental results show that the algorithm can overcome the problem of interframe vibration of sequence images, thus realizing accurate detection of small maritime targets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.