This paper presents the results of a numerical study of the optical mode confinement in whispering gallery mode disk nanocavities with hyperbolic dispersion using nanolayered Al/SiO2 hyperbolic metamaterial with different Al fill fractions. The fundamental properties of the optical modes and resonance frequencies for the disk nanocavities are studied using the numerical finite-element method. Numerical simulations show that light can be well confined in a disk nanocavity with a radius of up to an order of magnitude smaller than free-space resonant wavelength. This paper will also focus on how Purcell factor and quality factor of the disk nanocavities are affected by the fill fraction of the aluminum in the nanolayered metamaterial. Potential future applications for disk nanocavities with hyperbolic dispersion include silicon photonics optical communications networks, ultrafast LEDs, and biological nanoparticles sensing.
Today’s technological needs are demanding for faster and smaller optical components. Optical microcavities offer a high confinement of electromagnetic field in a small volume, with dimensions comparable to the wavelength of light, which provides a unique system for the enhancement of light-matter interactions on the nanoscale. However, further reducing the size of the optical cavity (from microcavity to nanocavity) is limited to the fundamental diffraction limit. In hyperbolic metamaterials, large wave vectors can be achieved. Therefore, optical cavities, created from hyperbolic metamaterials, allow the confinement of the electromagnetic field to an extremely small volume with dimensions significantly smaller than the wavelength of light. This paper presents the results of numerical study of the optical mode confinement in nanocavities with hyperbolic dispersion using nanolayered Al/SiO2 hyperbolic metamaterial with different Al fill fractions. The fundamental properties of the optical modes and resonance frequencies for the nanocavities are studied using the finite-elementmethod numerical technique. Numerical simulations show that the light can be well confined in a disk with radius up to λ/65. This paper will also focus on other variables such as Q-factor and Al fill fraction. Potential future applications for three-dimensional nanocavities with hyperbolic dispersion include: silicon photonics optical communications networks, ultrafast LEDs and biological nanoparticles sensing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.