Light absorption at the facet of a high power diode laser can lead to severe heating and catastrophic optical damage. In this work, a combination of high resolution thermoreflectance imaging and a detailed heat transport model of the diode chip are used to measure facet absorption in diode lasers. This approach permits a direct measurement of the effectiveness of passivation layers in improving facet robustness and device lifetime. The ability to quantify facet absorption is an essential step toward enabling rapid development of alternative passivation technologies and improving the reliability and maximum output power of diode laser systems.
The two-dimensional (2D) temperature profile of a high-power junction-down broad-area diode laser facet subject to back-irradiance (BI) is studied via CCD-based thermoreflectance (TR) imaging and finite element modeling. The temperature rise in the active region (ΔΤAR) is determined at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations. Interestingly, our study shows that ΔΤAR rises sharpest not when the back-irradiance is boresight-aligned with the active region but rather when it is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). At this critical location, ΔΤAR is found to increase by nearly a factor of three compared to its increase without back-irradiance. This provides insight on an important location for back-irradiance that may be correlated with catastrophic optical damage (COD) for diode lasers fabricated on absorbing substrates, and also suggests a thermal basis for truncated lifetime and deegraded performance for diode lasers experiencing backirradiance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.