We investigated the influence of free-standing GaN (FS-GaN) substrates on the performance of ultraviolet light-emitting-diodes (UV-LEDs) grown on top by atmospheric pressure metal-organic chemical vapor deposition. High-resolution double-crystal x-ray diffraction (HRDCXD) analysis demonstrated high-order satellite peaks and clear fringes between them for UV-LEDs grown on the FS-GaN substrate, from which the interface roughness was estimated. In addition, the full width at half maximum of the HRDCXD rocking curve in the (0002) and the (101¯2) reflections were reduced to below 90 arc sec. The Raman results indicated that the GaN-based epilayer of strain free was grown. Additionally, the effect of the FS-GaN substrate on the crystal quality of the UV-LEDs was examined in detail by transmission electron microscopy (TEM). The TEM characterizations revealed no defects and V-pits were found in the scanned area. Based on the results mentioned above, the light output power of UV-LEDs on the FS-GaN substrate can be enhanced drastically by 80% and 90% at 20 and 100 mA, respectively. Furthermore, an ultralow efficiency degradation of about 3% can be obtained for the UV-LEDs on the FS-GaN substrate at a high injection current. The use of an FS-GaN substrate is suggested to be effective for improving the emission efficiency and droop of UV-LEDs grown thereon.
We reported the defects and optical characterizations of the ultraviolet light-emitting diodes grown on free-standing GaN
substrate (FS-GaN) and sapphire. Cross-sectional transmission electron microscopy (TEM) images showed that the total
defect densities of grown UV LEDs on FS-GaN and sapphire including edge, screw and mixed type were 3.6×106 cm-2 and 5.5×108 cm-2. When substrate of UV LEDs was changed from sapphire to FS-GaN, it can be clearly found that the crystallography of GaN epilayers was drastically different from that GaN epilayers on sapphire. Besides, the microstructures or indium clustering can be not observed at UV LEDs on FS-GaN from TEM measurement. The internal quantum efficiency of UVLEDs on FS-GaN and sapphire were 34.8 % and 39.4 % respectively, which attributed to
indium clustering in multi-layers quantum wells (MQWs) of UV LEDs on sapphire. The relationship between indiumclustering
and efficiency droop were investigated by temperature-dependent electroluminescence (TDEL) measurements.
The present study investigated the structural and optical characterizations of the growth of GaN-based green lightemitting diodes using a TiN buffer layer. The purpose of growing GaN-based green LEDs on the TiN interlayer was to produce the naturally occurring hexagonal pattern structure on the surface of undoped-GaN. Then dislocations of the grown InGaN/GaN MQWs green LEDs structure on the uGaN template with the TiN interlayer produced base plane staking faults through epitaxial lateral overgrowth. Cross-section transmission electron microscope images showed that the dislocation density of green LEDs was decreased from 5 × 108 cm-2 to 7 × 107 cm-2, and that the dislocations in the green LEDs structure were reproduced. The full widths at half maximum of the omega-scan rocking curves in (002) and (102) reflectance on the GaN-based green LEDs were 334 and 488 arcsec, respectively. As the injection current was increased from 5 mA to 40 mA, the electroluminescence peak wavelength of the GaN-based green LEDs was shifted from 508 nm to 481 nm, a blue-shift of 27 nm. The forward voltage measured at an injection current of 20 mA was 4.9 V for the GaN-based green LEDs according to the current-voltage characteristics. Due to an increase in the In mole fraction of the GaN-based green LEDs on the uGaN template with the TiN interlayer, the strain and phase separation were increased, and the multiple quantum wells structural quality and device performances of the GaN-based green LEDs were decayed. A yellow band with a wavelength of 551nm was thereby produced according to room temperature photoluminescence measurement. Meanwhile, cross-section transmission electron microscope images indicated V-defects in multiple quantum wells structures of the green LEDs.
We reported the influence of free-standing (FS) GaN substrate on ultraviolet light-emitting-diodes (UV LEDs) by atmospheric-pressure metal-organic chemical vapor deposition (APMOCVD). The Raman spectrum shows the in-plane compressive stress of the GaN epitaxial structures grown on FS GaN substrate. Besides, the Raman spectrum reveals the relation between the crystal quality and the carrier localization degree in multi-quantum wells (MQWs). High resolution X-ray diffraction (HRXRD) analysis results show that the In0.025Ga0.975N/Al0.08Ga0.92N MQWs grown on FS GaN substrate has higher indium mole fraction than sapphire at the same growth conditions. The higher indium incorporation is corresponding with the red-shift 6 nm (387 nm) of the room temperature photoluminescence (PL) peak. The full widths at half maximum (FWHM) of omega-scan rocking curve in (002) and (102) reflectance on FS GaN substrate (83 arcsec and 77 arcsec) are narrower than UV LEDs grown on sapphire (288 arcsec and 446 arcsec). This superior quality may attribute to homoepitaxial growth structure and better strain relaxation in the FS GaN substrate. An anomalous temperature behavior of PL in UV LEDs designated as an S-shaped peak position dependence and W-shaped linewidth dependence indicate that exciton/carrier motion occurs via photon-assisted tunneling through localized states, what results in incomplete thermalization of localized excitons at low temperature. The Gaussian broadening parameters of carrier localization is about 16.98 meV from the temperature dependent photoluminescence (TDPL) measurement. The saturation temperature from the TDPL linewidth of UV LEDs on FS GaN substrate at about 175 K represents a crossover from a nonthermalized to thermalized energy distribution of excitons.
AlGaN/GaN high electron mobility transistors (HEMTs) with polar and nonpolar ZnO nanowires
modified gate exhibit significant changes in channel conductance upon expose to different
concentration of carbon monoxide (CO) at room temperature. The ZnO nanowires, grown by chemical
vapor deposition (CVD), with perfect crystal quality will attach CO molecule and release electrons,
which will lead to a change of surface charge in the gate region of the HEMTs, inducing a higher
positive charge on the AlGaN surface, and increasing the piezoinduced charge density in the HEMTs
channel. These electrons create an image positive charge on the gate region for the required neutrality,
thus increasing the drain current of the HEMTs. The HEMTs source-drain current was highly
dependent on the CO concentration. The limit of detection achieved was 400 ppm and 3200ppm in the
open cavity with continuous gas flow using a 50x50μm2 gate sensing area for polar and nonpolar ZnO
nanowire gated HEMTs sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.