The launch of ESA EUCLID mission is foreseen in 36020. The goal of the mission is to understand the nature of the dark energy and to map the geometry of the dark matter. The EUCLID telescope will be equipped with two instruments working in the visible range (VIS) and in the IR range (NISP) to investigate the distance-redshift relationship and the evolution of cosmic structures. The NISP (Near Infrared Spectro-Photometer) will operate in the near-IR spectral range (0.9-2μm) with two observing modes: the photometric mode for the acquisition of images with broadband filters, and the spectroscopic mode for the acquisition of slitless dispersed images on the detectors. NISP is then using four low resolution grisms to acquire spectroscopic image in different orientations to better distinguish the spectra observed and to cover two spectral ranges: 1250-1850nm range, and 920-1300nm range. Since 2010, Laboratoire d’Astrophysique de Marseille is working on the development and the test of the NISP grisms, that are complex optical components. The grism combines four main optical functions: a grism function done by the grating on the prism hypotenuse, a spectral filter done by a multilayer filter deposited on the first face of the prism, a focus function done by the curved filter face of the prism and a spectral wavefront correction done by the grating which grooves paths are nor parallel, neither straight. The NISP instrument is now entering in the integration phase of the proto flight model of the instrument. Therefore, the NISP grism flight models have been manufactured and delivered to the grism wheel assembly for integration by end of 2017. In this paper, we present the optical performance and characteristics of the four EUCLID NISP grisms flight models that have been developed and manufactured by four different industrial partners then integrated and tested by LAM. We focus on the performance obtained on the optical performance of the component; wavefront error of the components, the spectral transmission and groove profiles. The test results analysis show that the grisms flight models for NISP are well within specifications with an efficiency better than 70% on the spectral bandpass and a wavefront error on surfaces better than 30nm RMS. The results on the component show a good control of the manufacturing and integration process despite the difficulties at the beginning of the project to manufacture these components.
ESA EUCLID mission will be launched in 2020 to understand the nature of the dark energy responsible of the accelerated expansion of the Universe and to map the geometry of the dark matter. The map will investigate the distanceredshift relationship and the evolution of cosmic structures thanks to two instruments: the NISP and the VIS. The NISP (Near Infrared Spectro-Photometer) is operating in the near-IR spectral range (0.9-2μm) with two observing modes: the photometric mode for the acquisition of images with broad band filters, and the spectroscopic mode for the acquisition of slitless dispersed images on the detectors. The spectroscopic mode uses four low resolution grisms to cover two spectral ranges: three "red" grisms for 1250-1850nm range, with three different orientations, and one "blue" grism for 920- 1300nm range. The NISP grisms are complex optical components combining four main optical functions: a grism function (dispersion without beam deviation of the first diffracted order) done by the grating on the prism hypotenuse, a spectral filter done by a multilayer filter deposited on the first face of the prism to select the spectral bandpass, a focus function done by the curved filter face of the prism (curvature radius of 10m) and a spectral wavefront correction done by the grating which grooves paths are nor parallel, neither straight. The development of these components have been started since 10 years at the Laboratoire d’Astrophysique de Marseille (LAM) and was linked to the project phases: prototypes have been developed to demonstrate the feasibility, then engineering and qualification models to validate the optical and mechanical performance of the component, finally the flight models have been manufactured and tested and will be installed on NISP instrument. In this paper, we present the optical performance of the four EUCLID NISP grisms flight models characterized at LAM: wavefront error, spectral transmission and grating groove profiles. The test devices and the methods developed for the characterization of these specific optical components are described. The analysis of the test results have shown that the grisms flight models for NISP are within specifications with an efficiency better than 70% on the spectral bandpass and a wavefront error on surfaces better than 30nm RMS. The components have withstood vibration qualification level up to 11.6g RMS in random test and vacuum cryogenics test down to 130K with measurement of optical quality in transmission. The EUCLID grisms flight models have been delivered to NISP project in November 2017 after the test campaign done at LAM that has demonstrated the compliance to the specifications.
The NASA Space Mission Galex is designed to map the history of star formation by performing imaging and spectroscopic surveys in vacuum ultraviolet. The dispersive component for the spectroscopic mode is a CaF2 Grism which can be inserted with loose tolerances in the convergent beam to produce slitless spectra. Grisms are widely used in ground based astronomy in the visible or near infrared bands but the UV cutoff of the resin involved in their manufacturing process prevents their use in the UV range. LAS and Jobin-Yvon developed a proprietary process to imprint the blazed profile into the CaF2 crystal. We will present the measured optical performance of prototypes and flight models delivered this summer to NASA/JPL. We will also present a three bipod flexures mount we designed to minimize the mechanical stress on the optical component. The flight Grism bonded to such a mount has successfully passed the Galex environmental qualification.
Dark matter and dark energy mysteries will be explored by the Euclid ESA M-class space mission which will be launched in 2020. Millions of galaxies will be surveyed through visible imagery and NIR imagery and spectroscopy in order to map in three dimensions the Universe at different evolution stages over the past 10 billion years. The massive NIR spectroscopic survey will be done efficiently by the NISP instrument thanks to the use of grisms (for “Grating pRISMs”) developed under the responsibility of the LAM. In this paper, we present the verification philosophy applied to test and validate each grism before the delivery to the project. The test sequence covers a large set of verifications: optical tests to validate efficiency and WFE of the component, mechanical tests to validate the robustness to vibration, thermal tests to validate its behavior in cryogenic environment and a complete metrology of the assembled component. We show the test results obtained on the first grism Engineering and Qualification Model (EQM) which will be delivered to the NISP project in fall 2016.
The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe
by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision
program with its launch planned for 2020 (ref [1]).
The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900-
2000nm) as a photometer and spectrometer. The instrument is composed of:
- a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel
mechanism, a grism wheel mechanism, a calibration unit and a thermal control system
- a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a
mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem
structure
- a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the
spacecraft via a 1553 bus for command and control and via Spacewire links for science data
This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the
technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal
model (STM).
The Euclid space mission aims at elucidating dark matter and dark energy mysteries thanks to two scientific instruments:
VIS, the visible camera and NISP, the Near Infrared Spectro-Photometer. Millions of galaxies spectra will be recorded
thanks to its spectroscopic mode using four grisms developed under LAM (Laboratoire d’Astrophysique de Marseille)
responsibility. These dispersive optical components are made of a grating on a prism and include also, specifically for
NISP, three other optical functions: spectral filtering, focus adjustment and spectral wavefront correction. Therefore,
these optical elements are very challenging to manufacture (four industrial partners work on a single optical component)
and to test before integration into NISP. In this paper, first we describe the optical specifications and the manufacturing
process. Second, we explain the optical validation tests campaign: optical setups, measurements and data processing
procedures used to validate these complex optical components, particularly for transmitted efficiency and wavefront
error for which specifications are very stringent. Finally, we present the first results obtained on the grism EQM which
manufacturing is on-going and almost finished.
ESA Euclid mission is designed to map the geometry of the dark Universe. The NISP (Near Infrared Spectro- Photometer) is one of its two instruments dedicated to NIR with two main observing modes: the photometric mode and the spectroscopic mode, for the acquisition of slitless dispersed images using four low resolution grisms: three "red" grisms for 1250-1850nm, and one "blue" grism for 920-1300nm. The NISP grisms are complex optical components that combine four main functions: a grism done by the grating on the prism hypotenuse, a spectral filter done by a multilayer filter deposited on the first surface of the prism, a focus function done by a curved surface and a spectral wavefront correction done by the grating with curved grooves. This specific grating is made thanks to a new technic developed with SILIOS Technologies to manufacture a resin-free grating. The optical component is glued onto a mechanical ring, designed to survive to 60g DLL and to keep optical performance at 130K. The design and manufacturing of these components represent an important challenge to obtain the best performances with very constraining requirements. We will present the performance obtained on scale-1 prototypes of the filter, the grating and the mount manufactured to validate the final design choices and used to make the necessary trade-off during the development phase. All the prototypes have shown very good optical performances and have withstood vibrations and vacuum cryogenic tests that confirm the feasibility of NISP grisms and prepare the next phase for the procurement and tests of NISP grism flight models.
The grism mount design for the Euclid-NISP mission was studied to maintain optical performances and alignment at cryogenic temperature, and to survive to launch vibrations. An Invar mount with strong weight-relief bonded to the Silica grism through tangential blades has been designed. In spring 2015 we proceeded to thermal cycling and vibration tests to successfully qualify the Grism Engineering Model in the Euclid space environment. Thanks to detailed Finite Element analyses, we correlated simulations and tests. Now that phase C began, we are manufacturing the Engineering and Qualification Model and the four Flight Models. Thus, random coupled analyses of the grisms on the complete wheel assembly and impact of interface preloads on the grism behavior have also been studied.
The ESA mission Euclid is designed to map the geometry of the dark Universe by investigating the distance-redshift
relationship and the evolution of cosmic structures. In the Euclid design of the NISP instrument, the spectroscopic
channel uses four slitless low resolution grisms in NIR wavelength with four different orientations. Euclid grisms
combine two optical functions: a grism function (ie dispersion without deviation at a specific wavelength) done by the
grating associated with the prism and a spectral filter function done by a multilayer filter deposited on the entrance
surface of the prism. After a successful development of a prototype of a grating realized by a photolithography process,
we have begun a new phase of the prototype to manufacture a complete component, with a grism and a filter, and to
validate its performance. Its development is very challenging as it requires manufacturing of the component in several
steps which involve three different companies. We will present first the main optical requirements for the grism defined
for the phase B and how the efficiency and wavefront specifications are split into the different components of the grism
(mechanical mount, grating and filter). Then, we will describe the manufacturing process chosen for the NISP grism.
Finally, we will present the first results of the optical characterisation of the prototype of the grism: global efficiency
measurement, shape of the groove, wavefront contribution, and the trade-off made to achieve the final performance.
The Euclid mission objective is to understand why the expansion of the Universe is accelerating by mapping the geometry of the dark Universe by
investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision
program with its launch planned for 2020.
The NISP (Near Infrared Spectro-Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (0.9-2μm) as a
photometer and spectrometer. The instrument is composed of:
- a cold (135K) optomechanical subsystem consisting of a SiC structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a
grism wheel mechanism, a calibration unit and a thermal control system
- a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K,
integrated on a mechanical focal plane structure made with Molybdenum and Aluminum. The detection subsystem is mounted on the optomechanical
subsystem structure
- a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the
spacecraft via a 1553 bus for command and control and via Spacewire links for science data
This presentation describes the architecture of the instrument at the end of the phase B (Preliminary Design Review), the expected performance, the
technological key challenges and preliminary test results obtained on a detection system demonstration model.
We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be ying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel plates with a low noise pnCCD. MXT will provide an effective area of about 50 cm2, and its point spread function is expected to be better than 3.7 arc min (FWHM) on axis. The estimated sensitivity is adequate to detect all the afterglows of the SVOM GRBs, and to localize them to better then 60 arc sec after five minutes of observation.
The spectroscopic channel of the Euclid Near Infrared SpectroPhotometer (NISP) relies on four grisms mounted on a
wheel via Invar mounts. The mount design was studied to maintain the optical performances and alignment at cryogenic
operating temperature (120K), and to survive launch vibrations. We designed two stages of radially compliant blades:
one set of 9 blades is bonded to the Silica grism and the second set of 3 blades is located at interface points with the
wheel. Severe packaging and mass constraints yielded us to design a ring mount with strong weight relief. In fall 2013
we proceeded to thermal cycling (323K-105K), vibration tests (10.7 g rms) to successfully qualify the grism mount in the
Euclid environment. Thanks to detailed finite element analyses, we correlated simulations and tests.
The Euclid mission objective is to map the geometry of the dark Universe by investigating the distance-redshift
relationship and the evolution of cosmic structures. The NISP (Near Infrared Spectro-Photometer) is one of the two
Euclid instruments operating in the near-IR spectral region (0.9-2μm). The instrument is composed of:
- a cold (140K) optomechanical subsystem constituted by a SiC structure, an optical assembly, a filter wheel
mechanism, a grism wheel mechanism, a calibration unit and a thermal control
- a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG 2.4μm. The detection subsystem is
mounted on the optomechanical subsystem structure
- a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an
instrument control unit.
This presentation will describe the architecture of the instrument, the expected performance and the technological key
challenges. This paper is presented on behalf of the Euclid Consortium.
A. Goldwurm, P. Ferrando, D. Götz, P. Laurent, F. Lebrun, O. Limousin, S. Basa, W. Bertoli, Eric Delagnes, Y. Dolgorouky, O. Gevin, A. Gros, C. Gouiffes, F. Jeanneau, C. Lachaud, M. Llored, C. Olivetto, G. Prevot, D. Renaud, J. Rodriguez, C. Rossin, S. Schanne, S. Soldi, P. Varniere
The main objective of the Wide Field Monitor (WFM) on the LOFT mission is to provide unambiguous detection of the high-energy sources in a large field of view, in order to support science operations of the LOFT primary instrument, the LAD. The monitor will also provide by itself a large number of results on the timing and spectral behavior of hundreds of galactic compact objects, Active Galactic Nuclei and Gamma-Ray Bursts. The WFM is based on the coded aperture concept where a position sensitive detector records the shadow of a mask projected by the celestial sources. The proposed WFM detector plane, based on Double Sided micro-Strip Silicon Detectors (DSSD), will allow proper 2-dimensional recording of the projected shadows. Indeed the positioning of the photon interaction in the detector with equivalent fine resolution in both directions insures the best imaging capability compatible with the allocated budgets for this telescope on LOFT. We will describe here the overall configuration of this 2D-WFM and the design and characteristics of the DSSD detector plane including its imaging and spectral performances. We will also present a number of simulated results discussing the advantages that this configuration offers to LOFT. A DSSD-based WFM will in particular reduce significantly the source confusion experienced by the WFM in crowded regions of the sky like the Galactic Center and will in general increase the observatory science capability of the mission.
For integral field spectroscopy R&D activities in progress at LAM, and particularly in relation with SNAP - SuperNova/Acceleration Probe - spectrograph, LAM has an on-going program to qualify Image Slicers for space
instrumentation. In this context, an optomechanical concept of an image slicer supported by three bipods has been
designed, realized and tested at the laboratory. This paper presents the mechanical design of the invar mount equipped
with three bipods and supporting an assembly of 60 thin zerodur slices tied together thanks to optical contact. We
document the design improvement made from last blades flexures prototype and we describe all the tests conducted on
this new prototype: optical contact tests, vibration tests and thermal cycles. Thanks to a detailed FEM analysis on this
three bipods concept, we correlate simulations with tests.
In the context of the NASA CNES FIREBALL balloon borne experiment, we present the design of a semi-kinematic
mount to hold the 1 meter class mirrors of this mission. To maintain these large optics in a reasonable mass and price
budgets we choose thin ULE mirrors with a thickness over diameter ratio of 1/16. Such thin mirrors require a multi
support mount to reduce self weight deflection. Classical multi support mount used for ground based telescope would not
survive the level of shock observed in a balloon experiment either at parachute opening or landing. To firmly maintain
these mirrors in several points without noticeably deforming them we investigated the design of a two stages semi-kinematic
mount composed of 24 monopods. We present the detailed design of this innovative mirror mount, the finite
element modeling with the deduced optical wavefront deformation. During the FIREBALL integration and flight
campaign in July 2007 at CSBF, we confirmed the validity of the mechanical concept by obtaining an image quality well
within the required specifications. Variants of this approach are potentially applicable to large thin mirrors on ground-based
observatories.
A well-adapted visible and infrared spectrograph has been developed for the SNAP (SuperNova/Acceleration Probe)
experiment proposed for JDEM. The primary goal of this instrument is to ensure the control of Type Ia supernovae. The
spectrograph is also a key element for calibration and is able to measure redshift of some thousands of galaxy spectra
both in visible and IR.
An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is
presented. We present the current design and expected performances. We show that with the current optimization and
the proposed technology, we expect the most sensitive instrument proposed on this kind of mission. We recall the
readiness of the concept and of the slicer technology thanks to large prototyping efforts performed in France which
validate the proposition. This work is supported in France by CNRS/INSU, CNRS/IN2P3 and by the French spatial
agency (CNES).
During the IFU prototype study that the laboratory led for ESA in the frame of the JWST/NIRSpec technological development studies in 2004, an optomechanical concept was realized and tested at the laboratory. As some limitations of this design were demonstrated, the laboratory decided to develop a new concept of optomechanical interface to
support glass image slicers, compliant with space environment specifications. This development was conducted in a very short time and with a tiger team. This prototype was designed and realized at LAM. It consists in an invar monolithic mechanical mount (including three blades) supporting an assembly of three zerodur optical parts tight together thanks to optical contact. The interface between invar and zerodur is done with glue. This prototype has been qualified at 10.5 g rms and 77K. It demonstrates the stability of the optical part within +/- 9 arcsec. The test campaign points up the evolution of the glue properties
during time and thermal cycles. Thanks to a detailed FEM analysis, the change of the glue material damping has been
estimated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.