The 4m class New Robotic Telescope (NRT) is an optical facility designed to revolutionize the rapid follow-up and classification of variable and transient objects. The project is at the stage where key systems are progressing through their detailed design phases, which presents a major engineering challenge for all project partners to manage design progress of the high-level interfacing systems while still ensuring the delivery of top-level science requirements. The freezing of key system architecture features at the preliminary design review in 2021 has allowed significant progress to be made towards a target of Engineering First Light (EFL) in 2027. The project critical path is currently driven by the optics and the enclosure. Both of these components are novel in design: the NRT will have an 18-segment primary mirror and a large, fully-opening clamshell enclosure. Particular progress has been made regarding enclosure design, software & control, science & operations software and the focal station and associated science support instrumentation. The Critical Design Review for the M3 (fold mirror) was completed Q4 2022 which enabled manufacturing of the first NRT glassware to begin and prototyping of the complete opto-mechanical, hardware and software subsystem for its control to take place. The NRT will join the 2m Liverpool Telescope on La Palma, and as such this existing facility has been exploited to prototype the new science operations user interface and the NRT wavefront sensor.
The forthcoming New Robotic Telescope, a collaboration between the UK and Spain, is poised to become the world’s largest and fastest autonomous observatory, located in La Palma. It is tailored to be a premier 4m class follow-up facility for the imminent wave of time-domain and transient astrophysics. It exemplifies innovation with its use of serverless architectures and a unified DevOps methodology, integrating Docker and Kubernetes to facilitate reliable, scalable, and responsive deployments both on-premises and cloud infrastructure. This model not only aligns with modern web-based principles and distributed deployments but also ensures that astronomers and operations staff have unfettered access to manage their observations, data products and monitoring of the facility in a unified modern interface, setting a new standard for modern astronomical research facilities. Building on the Liverpool Telescope’s autonomous robotic legacy, the New Robotic Telescope merges the GranTeCan Control System’s framework with a novel Robotic Control System, facilitating the transition from human-operated to fully automated observatory functions. We describe the current status of the infrastructure for the New Robotic Telescope software stack, focusing on the current DevOps infrastructure and ongoing development, as well as outlining the future work ahead of the initial construction of the telescope.
The flight units of the laser module for the Raman Laser Spectrometer (RLS) instrument of the ExoMars mission were manufactured, tested and finally delivered in March 2018. Based on the data collected during flight batch acceptance testing, FM and FS lasers were picked from that batch, and the former was subsequently tested at the next integration levels, i.e. RLS instrument, Analytical Laboratory Drawer (ALD) and ExoMars rover itself. As the system complexity increased, the data available for laser performance assessment became sparse due to shorter testing slots and to the basic information available through instrument telemetries and products. In order to assess the status of the laser module during these years of on-ground testing we have developed tools to extract as much information as possible from test sessions. Our starting inputs were some relevant house-keepings, such as laser optical power and temperature, and Raman spectra, from where laser spectral signature was obtained. Our analysis of the available on-ground test sessions at ALD and rover level show that the laser unit is working properly, but a fine tune of the working temperature setpoint may be required to provide optimal scientific return. The procedures developed will be also highly valuable for the definition of the laser performance assessment engineering tools during standard scientific operation in Mars.
Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instrument of the ExoMars 2020 mission, within the ESA’s Aurora Exploration Program. RLS is mainly composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit), and will analyse Mars surface and sub-surface crushed samples by Raman spectroscopy. For the RLS Flight Model (FM) verification campaign, an end-to-end quick functional test was developed to evaluate the instrument performances stability. This test consists on a comparison of the centre pixel and the FWHM (Full Width at Half Maximum) of a set of Ne calibration lamp peaks, and was decided to be done before and after ever risky activity (transport, thermal tests, etc.) In the course of the end-to-end functional test carried out on RLS FM as part of the pre-delivery checks, an increment on the FWHM calibration lamp peaks was observed. Such performance variation was also noted to be dependent on the way the SPU thermal strap was assembled and the environmental conditions (P and T) in which the spectra were acquired. For that reason, a new SPU thermal strap assembly procedure was decided to be designed in order to ensure no extra negativeeffect was going to appear during the RLS FM installation on the ALD (Analytical Laboratory Drawer) and the instrument flight operation. In this paper, a deep exploration of the conditions in which such “de-focus” (probably due to an excessive thermal gradient between SPU structure and CCD) appears is carried out, demonstrating that the new thermal strap assembly procedure minimizes an incidental extra de-focus appearance during RLS installation on the ALD.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.