Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.
Experimental studies of holographic thermal stability in phenanthrenequinone (PQ)-doped poly(methyl methacrylate-co-methacrylic acid) [P(MMA-co-MAA)] photopolymers are presented. A possibility to improve the thermal stability of holograms is demonstrated by doping methacrylic acid (MAA) into the poly(methyl methacrylate) (PMMA) polymer matrix. MAA as a copolymerization monomer can form a more stable polymer matrix with methyl methacrylate (MMA) monomer and increase average molecular weight of photoproducts, which finally depress the diffusion of photoproduct. The optimized MAA concentration copolymerized into P(MMA-co-MAA) polymer matrix can bring nearly a month's lifetime of gratings, which is obviously an improvement over the usual PQ-PMMA material under thermal treatment.
This paper presented an experimental study of holographic scattering caused by noise gratings recorded in the
PQ-PMMA photopolymers. Dependence of the thickness and temperature on the holographic scattering losses was
evaluated. It is found that the scattering losses increased as the thickness and temperature. According to the relationship
between the polymerization rate and exposure, the optimal material parameters thickness 2mm and the temperature
20-30°C were obtained for avoiding the buildup of strong noise gratings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.