The Enhanced Border Security and Visa Entry Reform Act of 2002 requires that the Visa Waiver Program be available only to countries that have a program to issue to their nationals machine-readable passports incorporating biometric identifiers complying with applicable standards established by the International Civil Aviation Organization (ICAO). In June 2002, the New Technologies Working Group of ICAO unanimously endorsed the use of face recognition (FR) as the globally interoperable biometric for machine-assisted identity confirmation with machine-readable travel documents (MRTDs), although Member States may elect to use fingerprint and/or iris recognition as additional biometric technologies. The means and formats are still being developed through which biometric information might be stored in the constrained space of integrated circuit chips embedded within travel documents. Such information will be stored in an open, yet unalterable and very compact format, probably as digitally signed and efficiently compressed images.
The objective of this research is to characterize the many factors that affect FR system performance with respect to the legislated mandates concerning FR. A photograph acquisition environment and a commercial face recognition system have been installed at Mitretek, and over 1,400 images have been collected of volunteers.
The image database and FR system are being used to analyze the effects of lossy image compression, individual differences, such as eyeglasses and facial hair, and the acquisition environment on FR system performance. Images are compressed by varying ratios using JPEG2000 to determine the trade-off points between recognition accuracy and compression ratio. The various acquisition factors that contribute to differences in FR system performance among individuals are also being measured. The results of this study will be used to refine and test efficient face image interchange standards that ensure highly accurate recognition, both for automated FR systems and human inspectors. Working within the M1-Biometrics Technical Committee of the InterNational Committee for Information Technology Standards (INCITS) organization, a standard face image format will be tested and submitted to organizations such as ICAO.
Electron Paramagnetic Resonance (EPR) allows for the non-invasive imaging of free radicals in biological systems. Although a number of physical factors have hindered the development of EPR as an imaging modality, EPR offers the potential for tissue oxymetry. EPR images are typically reconstructed using a traditional filtered back-projection technique. We are attempting to improve the quality of EPR images by using maximum-entropy based iterative image reconstruction algorithms. Our investigation has so far focused on two methods, the multiplicative algebraic reconstruction technique (MART), and an algorithm that is motivated by interior-point reconstruction. MART is a row-action method that maintains strict equality in the constraints while minimizing the entropy functional. The latter method, which we have named Least-Squares Barrier Entropy (LSBEnt), transforms the constrained problem into an unconstrained problem and maximizes entropy at a prescribed distance from the measured data. EPR studies are frequently characterized by low signal-to-noise ratios and wide line widths. The effect of the backprojection streaking artifact can be quite severe and can seriously compromise a study. We have compared the iterative results with filtered backprojection on two-dimensional (2-D) EPR acquisitions of various phantoms. Encouraging preliminary results have demonstrated that one of the clear advantages of the iterative methods is their lack of streaking artifacts that plague filtered backprojection.
Interactive visualization of multi-dimensional biological images has revolutionized diagnostic and therapy planning. Extracting complementary anatomical and functional information from different imaging modalities provides a synergistic analysis capability for quantitative and qualitative evaluation of the objects under examination. We have been developing NIHmagic, a visualization tool for research and clinical use, on the SGI OnyxII Infinite Reality platform. Images are reconstructed into a 3D volume by volume rendering, a display technique that employs 3D texture mapping to provide a translucent appearance to the object. A stack of slices is rendered into a volume by an opacity mapping function, where the opacity is determined by the intensity of the voxel and its distance from the viewer. NIHmagic incorporates 3D visualization of time-sequenced images, manual registration of 2D slices, segmentation of anatomical structures, and color-coded re-mapping of intensities. Visualization of MIR, PET, CT, Ultrasound, and 3D reconstructed electron microscopy images has been accomplished using NIHmagic.
Accurate statistical correlation of brain activation in functional magnetic resonance image (MRI) studies depends on the reduction of artifacts induced by patient motion. We have addressed this problem in two ways. First, we have eliminated gross movement by the development of an immobilization mask. Second, we have implemented the image registration procedure, mutual information. This registration procedure is used to correct remaining misalignments due to patient motion. We have chosen maximization of mutual information because it is applicable to a broad range of image registration problems because it requires no segmentation, feature extraction, a priori information, or operator-assisted extractions. Initial results, as applied to fMRI data, are also presented. Our results indicate that we have reduced the motion artifacts present in our original data sets with sub-voxel accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.