Understanding the origin of the Martian moons is the main objective of the JAXA MMX (Martian Moons eXploration) mission, that will be launched in October 2026. Among the 13 instruments composing the payload, MIRS is an infrared imaging spectrometer that will map the mineralogy and search for organic compounds on the moons’ surfaces. MIRS will also study the Martian atmosphere, focusing on the spatial and temporal variations of water, dust and clouds. MIRS is operating in the 0.9-3.6 μm spectral range with a spectral resolution varying from 22 nm to 32 nm. The field of view covers 3.3° whereas the instantaneous field of view is 0.35 mrad. This presentation will detail the design and present the end-to-end performance obtained during the final instrument test in a representative thermal environment.
The Exoplanet Characterisation Observatory, EChO, is a dedicated space mission to investigate the physics and chemistry of Exoplanet atmospheres. Using the differential spectroscopy by transit method, it provides simultaneously a complete spectrum in a wide wavelength range between 0.4μm and 16μm of the atmosphere of exoplanets. The payload is subdivided into 6 channels. The mid-infrared channel covers the spectral range between 5μm and 11μm. In order to optimize the instrument response and the science objectives, the bandpass is split in two using an internal dichroic. We present the opto-mechanical concept of the MWIR channel and the detector development that have driven the thermal and mechanical designs of the channel. The estimated end-to-end performance is also presented.
In this paper, we present the design of the MWIR channels of EChO. Two channels cover the 5-11 micron spectral
range. The choice of the boundaries of each channel is a trade-off driven by the science goals (spectral features of key
molecules) and several parameters such as the common optics design, the dichroic plates design, the optical materials
characteristics, the detector cut-off wavelength. We also will emphasize the role of the detectors choice that drives the
thermal and mechanical designs and the cooling strategy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.