Vehicle pose estimation is useful for applications such as self-driving cars, traffic monitoring, and scene analysis. Recent developments in computer vision and deep learning have achieved significant progress in human pose estimation, but little of this work has been applied to vehicle pose. We propose VehiPose, an efficient architecture for vehicle pose estimation, based on a multi-scale deep learning approach that achieves high accuracy vehicle pose estimation while maintaining manageable network complexity and modularity. The VehiPose architecture combines an encoder-decoder architecture with a waterfall atrous convolution module for multi-scale feature representation. Our approach aims to reduce the loss due to successive pooling layers and preserve the multiscale contextual and spatial information in the encoder feature representations. The waterfall module generates multiscale features, as it leverages the efficiency of progressive filtering while maintaining wider fields-of-view through the concatenation of multiple features. This multi-scale approach results in a robust vehicle pose estimation architecture that incorporates contextual information across scales and performs the localization of vehicle keypoints in an end-to-end trainable network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.