The James Webb Space Telescope Aperture Masking Interferometer provides NIRISS with its highest angular resolution imaging mode, an ultra-stable non-redundant masking Fizeau interferometer. Until recently, the precision of its interferometric visibilities has been limited to ~ 1% by systematic uncertainties in its optical state and detector noise properties. Using a data-driven calibration of AMI with a differentiable forwards model, this can be improved by more than an order of magnitude, uniquely enabling high angular resolution science not possible from the ground. We will discuss the pipeline and observing strategies required to achieve this, illustrated with science highlights enabled this way from the first two years of AMI data, and generalizations of this approach to kernel phase interferometry.
Charge migration in infrared detectors such as in JWST leads to a 'brighter-fatter effect', where photoelectrons from bright pixels spill to nearby faint pixels and blur the pixel response function at its finest spatial scales - a limiting noise floor for high angular resolution astronomy. We demonstrate an effective forwards model: a nonlinear convolution predicting the effect on every pixel as a polynomial of the pixels in its neighbourhood, learning the coefficients by gradient descent together with a differentiable model of the point spread function. We apply this to the JWST/NIRISS Aperture Masking Interferometer, inferring an accurate model for the BFE in NIRISS; overcoming the main barrier to precise interferometric observations with JWST; and illustrating a simple path to high-quality BFE calibration in other JWST instruments and infrared detectors in general.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.