Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.
In this study, a numerical model based on finite element method was proposed to evaluate the thermo-mechanical behavior of a composite structure material. The composite structure consisted of substrate, thermal spray coating, and an embedded optical fiber. The stress level of the composite structure especially the embedded fiber at the end of elaboration process was analyzed. The variations of refractive index of the embedded fiber due to the thermo-optic effect and the elasto-optic effect were investigated. The results showed that the the variation of stress and refractive index during the elaboration process had an insignificant effect on the embedding quality of the optical fiber under the presented optimized experimental conditions.
The optical fiber accelerometer owns exceptional advantages in various industrial applications due to its high sensitivity,
immunity to electromagnetic interference, small size, low cost and easy to form sensor network etc. This study aims to
evaluate an optimized interferometric optical fiber accelerometer based on Michelson structure. An integral parameter S
was firstly proposed to assess the general performance of the accelerometer including both the sensitivity and resonance
frequency, the compliant cylinder of the accelerometer proposed in this study was optimized as the composite structure
materials, two typical sensitivity enhanced elastic materials of polycarbonate and silicone rubber were selected. This new
type accelerometer was capable to provide higher phase sensitivity and wider flat bandwidth with optimized proportional
mixing between two materials. The comparison analysis of Young’s modulus and Poisson ratio on the promotion of integral
parameter S was finally discussed.
In this paper, we propose a new type of push-pull structure fiber optic accelerometer based on 3×3 coupler for the first time and carried out measurements of its responsivity and cross-axis sensitivity. With specific algorithm, the phase signal of the sensor can be extracted without complicated modulation and demodulation. Experiments show that the responsivity of the accelerometer is larger than 40dB (0dB ref 1rad/g) within the frequency band from 10Hz to 800Hz, which agrees well with the theoretical analysis. In addition, the cross-axis sensitivity can be optimized as low as about -30dB due to the push-pull structure. The results reported here indicate that this type of fiber optic accelerometer can be applied in vibration sensing such as micro seismic monitoring.
Temperature sensing is one of the key requirements for Structure Health Monitoring (SHM) in various applications. The intensity modulated optical fiber sensors are excellent candidate for this area of applications due to their relatively low cost, simple structure and diversity of applications. This work relates mainly to the feasibility evaluation of embedding optical fiber sensor into ceramic coating obtained by thermal spray process and the thermal response of the embedded sensor. The sensor principle and the specimen configuration are firstly presented, a 3D model is then built up in order to evaluate the effects of temperature variation on deformations of the optical fiber sensor which finally lead to the variation of optical intensity. First results of thermal response are discussed.
The in-situ detection of temperature or stresses produced by the thermal spraying process is important for both the optimization of the elaboration conditions and the subsequent service monitoring of these systems. Optical fiber sensors are excellent candidates for this area of application since they can be embedded into the layers of several dissimilar materials of smart structures. This work relates mainly to the process of embedding optical fibers into ceramic coatings and to the characteristics of the embedded fiber. Firstly, thermal flame spraying is chosen as the elaboration process. Next, a thermal model is proposed in order to evaluate the thermal strain variation with the temperature during the elaboration process in the structure. Finally, a microscopic observation of the embedded optical fiber in the ceramic coating is reported, the mechanical adhesion strength of the embedded fiber is evaluated and the results of the optical attenuation change during the elaboration process are given. They show that no significant fluctuation of the optical power transmitted in the fiber is observed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.