In this work, we study infrared optical pump-induced changes in terahertz conductivity of multi-layer graphene on a silicon substrate using terahertz time-domain spectroscopy. Results indicate that the conductivity and optical parameters of investigated material strongly depend on a pumping intensity and the presence of FeCl3 molecules intercalation. The findings are helpful for determining the most optically tunable material towards designing of optically controllable terahertz devices based on new two-dimensional material beyond graphene monolayer.
We propose a high-Q optically tunable terahertz (THz) filter consisting of subwavelength multilayer graphene/ dielectric/metal asymmetric square split-ring resonators (SRR) within a unit cell. The obtained simulation results demonstrate that Fano resonance can be efficiently modulated under IR-radiation of different intensity value. The modulation depth of Fano resonance can achieve about 60% under the maximum considered pumping intensity (corresponding to 0.4 eV of Fermi energy) with the Q-factor of about 135. The proposed metasurface provides narrow filtering of incident light as well as sensing applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.