The key technology and main difficulty for optical fiber perimeter system is the extraction and recognition of intrusion signals, vibration signals normally consist of noises, intrusion and disturb signals. Firstly, a new detection method combining constant false alarm rate (CFAR) method and Level Crossing (LC) method was proposed to distinguish the intrusion and no-intrusion signal before recognition. The former can produce adaptive thresholds to eliminate noise and disturb signals according to the background homogeneity, the later can ensure the integrity of the intrusion signal and further reduce disturb signal. Second, multi-feature parameters including traditional timedomain features, wavelet packet energy Shannon entropy and wavelet packet energy, energy proportion, kurtosis, skewness are accurately extracted from the intrusion signal. Finally, use support vector machine (SVM) identify multi-feature vectors of different types of vibration signals. The proposed method was experimented on Sagnac optical fiber pre-warning system. The result show that the method can extract vibration signal effectively form sensing signals, improve the system recognition rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.