Ta2O5/SiO2 mixed film is a very promising material for the preparation of new optical and optoelectronic devices, but there are few reports on its etching characteristics. In this paper, Ta2O5/SiO2 mixed films with various proportions of Ta2O5 were prepared by ion-beam sputtering deposition. CHF3-based reactive ion etching (RIE) was used to etch Ta2O5/SiO2 mixed films. The etching profiles of Ta2O5/SiO2 mixed films were observed by using a field-emission scanning electron microscope (SEM). The RIE etch rates were investigated as a function of the Ta2O5/SiO2 mixture ratio, RIE power, chamber pressure and etching gas ratio. It is found that the etch rate of Ta2O5/SiO2 mixed films increase with an increase of RIE power and chamber pressure, and decrease with an increase of Ta2O5 composition in the Ta2O5/SiO2 mixed films. Moreover, it is also found that as the proportion of F-based gas increases, the etching rate of the Ta2O5/SiO2 mixed film first increases and then saturates. These results would be of importance for the fabrication of optical and optoelectronic devices based on Ta2O5/SiO2 mixed films.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.