It has been known for some time that sputtered low-density coatings deposited under vacuum (e.g. carbon or B4C), applied on top of high-density metallic coatings, can enhance the reflectivity in the soft x-ray band (below ~5 keV). In the last years, we experimented with novel carbonated coatings obtained by dip-liquid deposition, in which a thin film is formed on the surface of a mirror by immersion in a suitable precursor solution. After several attempts with different chemical compounds, we found an optimal candidate both for the reflectivity performance and for the convenience of the deposition process, which is much simpler and inexpensive compared to conventional processes. In particular, such coatings can enhance the soft x-ray response at the reflection angles employed in future telescopes, like ATHENA (ESA), Lynx (NASA) and eXTP (CAS). In this paper we consider the application of dip-liquid overcoatings on conventional coatings (Au, Ir) or in combination with recently proposed chromium overcoatings and their possible uses to enhance the reflectivity of x-ray mirrors at low, medium or higher energies, presenting the first experimental results of x-ray tests on these coatings.
The optical properties of x-ray mirror samples are commonly measured using diffractometers based on laboratory sources; like the Bede D1 diffractometer operating at INAF-OAB. This instrument can generate a collimated x-ray beam up to 60 keV, even though the most interesting energy region for x-ray astronomy applications is usually below 10 keV. In the softest part of this range (below 6 keV), high x-ray absorption in air hinders a full and precise characterization of optical components. In this work, we present an upgrade of the Bede D1 diffractometer that extends the operative range of the instrument below 6 keV; this is done by maximizing the flux at lowest energies and by reducing absorption by means of a helium-rich atmosphere. The upgraded instrument will be used for the tests of x-ray mirrors with innovative soft x-ray coatings, with potential application to the next generation x-ray telescopes (such as ATHENA and eXTP).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.