Universal blind steganalysis can detect hidden messages without using prior information about the steganographic system. Recently, Farid developed a wavelet coefficient, higher-order statistics based, universal blind steganalysis method. This approach is a global method which demonstrated a high-quality in performance standards. Fridrich and Goljan also presented a DCT based local targeted steganalysis method to break the F5 algorithm. However, both Farid’s and Fridrich and Goljan’s methods have some limitations. This paper presents a local universal steganalysis technique combining the advantages of both methods. The basic components of the presented method are: novel DCT multilevel decomposition with wavelet structure; a new set of feature vectors; and a modified kernel function in the Kernel Fisher Discriminant. Experimental results show the presented method offers better performance than commonly used schemes. Inherently, the presented method has the ability to localize the hidden information, it can capture stego information in small blocks, and it is functional using only a small training set.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.