Markov random field (MRF) model is an effective tool for polarimetric synthetic aperture radar (PolSAR) image classification. However, due to the lack of suitable contextual information in conventional MRF methods, there is usually a contradiction between edge preservation and region homogeneity in the classification result. To preserve edge details and obtain homogeneous regions simultaneously, an adaptive MRF framework is proposed based on a polarimetric sketch map. The polarimetric sketch map can provide the edge positions and edge directions in detail, which can guide the selection of neighborhood structures. Specifically, the polarimetric sketch map is extracted to partition a PolSAR image into structural and nonstructural parts, and then adaptive neighborhoods are learned for two parts. For structural areas, geometric weighted neighborhood structures are constructed to preserve image details. For nonstructural areas, the maximum homogeneous regions are obtained to improve the region homogeneity. Experiments are taken on both the simulated and real PolSAR data, and the experimental results illustrate that the proposed method can obtain better performance on both region homogeneity and edge preservation than the state-of-the-art methods.
The goal of pan-sharpening is to get an image with higher spatial resolution and better spectral information. However, the resolution of the pan-sharpened image is seriously affected by the thin clouds. For a single image, filtering algorithms are widely used to remove clouds. These kinds of methods can remove clouds effectively, but the detail lost in the cloud removal image is also serious. To solve this problem, a pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform (NSST) is proposed. For the low-resolution multispectral (LR MS) and high-resolution panchromatic images with thin clouds, a mask dodging method is used to remove clouds. For the cloud removal LR MS image, an adaptive principal component analysis transform is proposed to balance the spectral information and spatial resolution in the pan-sharpened image. Since the clouds removal process causes the detail loss problem, a weight matrix is designed to enhance the details of the cloud regions in the pan-sharpening process, but noncloud regions remain unchanged. And the details of the image are obtained by NSST. Experimental results over visible and evaluation metrics demonstrate that the proposed method can keep better spectral information and spatial resolution, especially for the images with thin clouds.
This paper presents a strong noise image enhancement method based on intrascale dependencies of the second
generation curvelet transform. Observing that the immediate four neighbor coefficients bear the most important
dependencies, we use spatial clustering property of the intrascale neighbor coefficients to separate noise and signal of
interest, and to deal with them differently, i.e. to suppress noise and strengthen edges. Comparing our approach with
Starck's enhancement model (Starck et al., 2003), we experimentally find that for high noise level images, our method
outperforms the starck's system in noise suppression and signal strengthening and produces better enhancement results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.