Surface-water body maps are imperative for effective mosquito larvae control. This study aims to select a method for the automatic and regular mapping of surface-water bodies in rice fields and wetlands using Sentinel-1 synthetic aperture radar data. Four methods were adapted and developed for automated application: the Otsu valley-emphasis algorithm, a classification method based on the textural feature of entropy, a method using K-means unsupervised classification, and a method using the Haralick’s textural feature of dissimilarity and fuzzy-rules classification. The results were assessed using field data collected during the mosquito breeding periods of 2018 and 2019 in the region of Central Macedonia (Greece). The Otsu valley-emphasis technique provides the highest overall accuracy (0.835). The accuracy is higher at the beginning of the summer (0.948) than at the end of the rice-growing season due to higher density of vegetation. Results using this method were further assessed during the main larvicide application period. The presence of vegetation, built-up areas, floating algae in rice-paddies, salt-crust formations in wetlands, and water depth, were found to affect the performance of the algorithm. A WebGIS platform was designed for the visualization of the produced water maps along with other data related to mosquito-larvae presence.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.