In this work, we performed temperature-dependent studies of the THz transient amplitude FeCo waveformes, from a FeCo/graphene nanobilayer sample, triggered by fs pulsed laser in the 80–400 K range. We show that a due-twofold extension, in the range 80–300 K the amplitude increases with temperature and tends to saturate above this range. This dependence contrasts sharply with the temperature dependence of the FeCo film's magnetization, which shows a typical ferromagnetic (FM) trend with Curie temperature well above 400 K. We explain this discrepancy, as the presence of an antiferromagnetic (AFM) at the FeCo/graphene interface, which is associated with the native oxide formed at the FeCo surface. The Angle Resolved X-ray Photoelectron Spectroscopy studies of a bare FeCo film revealed coexistence of the metallic [Co(0), Fe(0)] and antiferromagnetic [Co(II)O and the Fe(III)2O3] phases, at the sample surface. The observation of the exchange bias in our magnetization hysteresis loop of a FeCo film confirms presence of an FM/AFM interface layer at the FeCo surface. In summary, we conclude that the temperature dependence of the THz transient amplitude is governed by the AFM phase.
We performed comprehensive studies of current transport across SWCNT-Si heterojunctions, considered as a promising component for advanced photodetectors. Low-doped n-type Si was used as a substrate and SWCNT films were deposited on its top by a wet method out of solutions. We collected current-voltage (I-V) characteristics of the heterojunctions in the 78-300 K temperature range under dark conditions. In the forward bias, the I-V curves exhibited two regimes, namely, the “low” and “high” voltage regimes. We applied the Cheung–Cheung method to evaluate the height of the Schottky barrier, the series resistance, and the ideality factor, for both regimes. For tested samples, the ideality factor is very well fitted with the T-1/2 dependence. The slope of this dependency for the “high” voltage regime decreases with the increase of the SWCNT concentration, what agrees with the Card–Rhoderick model that the slope in this regime should be inversely proportional to the density of states at the SWCNT/SiO2 interface, which in turn is proportional to the SWCNT concentration. The crossover voltage between the two voltage regimes decreased linearly with the temperature for all our samples.
Pancreatic ductal adenocarcinoma (PDAC) ranks among the malignancies with the highest fatality and morbidity rates. This is predominantly attributable to an absence of understanding the intricate and diverse microenvironment of the tumor. We use terahertz time-domain spectroscopy (THz-TDS) imaging in transmission geometry to probe ex-vivo the heterogenous microenvironment of the genetically modified murine PDAC tissue that closely resembles the PDAC heterogeneity in human malignancy. We introduced a maximum a-posteriori probability estimation algorithm to objectively the tumor’s heterogenous microenvironment using the average values of refractive index and absorption coefficient within the useable terahertz bandwidth as imaging markers. Direct comparison of stained histopathologic images and the refractive index and the absorption coefficient high-resolution, two-dimensional maps of the same PDAC samples confirms the high potential of the THz-TDS method for tumor tissue characterization.
The unique behavior of quantum systems, such as coherence, superposition, and entanglement, can be harnessed to process, encode, and transmit information. Each quantum application (communication, computing, metrology, sensing, etc.) places its own set of requirements on the underpinning photonic technology, but many of these requirements are common to all the applications, and they form the basis for the implementation of future silicon quantum photonic integrated circuits (SiQuPICs). These common elements include single- or entangled-pair photon sources, passive optics to coherently mix photonic modes, active optics and delay lines to reconfigure those modes, high extinction ratio filters, and single-photon detectors. In this paper, we describe the design and fabrication of a basic SiQuPIC, comprising single-photon or entangled-photon-pair sources coupled to passive optical waveguides ending with single-photon detectors, all integrated on a single Si chip.
We present a single-flux-quantum (SFQ) based digital correlator to trace independent signals from two superconducting single-photon detectors (SSPDs) triggering its inputs. In our design two SSPDs are magnetically coupled to inputs of a readout system where direct current (DC)-to-SFQ converters are used to convert transient SSPD output pulses, triggered by detection of single-photon events, to SFQ pulses. The coincidence verification of SFQ pulses, generated by the two DC-to-SFQ converters, is performed with a modified SFQ coincidence buffer. The coincidence buffer is designed to generate an SFQ output pulse only when its both inputs are triggered simultaneously, or within a preset margin time. The output of the coincidence buffer is connected via, this time, an SFQ-to-DC converter, to a pulse counter operated at room temperature. We performed extensive simulations of both the SSPD equivalent circuit and correlator redout elements for the proposed coincidence scheme, using a WRSpice and PSCAN2 simulation platforms that are specifically designated to model Josephson junctions and widely used to simulate operation of the SFQ circuitry. In particular, we investigated our coincidence correlator scheme for measurements of the second-order correlation function, used to demonstrate the antibunching effect in the single-photon detection of non-classical light.
We present a photodetector capable of detecting both optical and x-ray picosecond pulses, based on our in-house grown cadmium magnesium telluride (Cd,Mg)Te single crystals. We focused on a specific Cd0.97Mg0.03Te, In-doped crystal composition, because of its bandgap suitable for 800-nm-wavelength light detection and a single-picosecond optical photoresponse. The detector was fabricated as a planar metal-semiconductor-metal structure with interdigitated electrodes and exhibited a linear, Schottky-free, current-voltage characteristics with <40-pA dark current and up to 20-mA/W responsivity. The detector temporal resolution was measured to be ~200-ps full-width-at-half-maximum transient, in response of ~100-fs-wide pulses consisting of either optical (800-nm wavelength) or x-ray (4.5-keV) photons and was limited by the detector housing and 15-GHz bandwidth of the readout oscilloscope. The latter demonstrates the detector is suitable for coarse timing in x-ray free-electron laser/optical femtosecond pump-probe spectroscopy applications. We also demonstrated that due to its very high stopping power, the Cd0.97Mg0.03Te detector responded well to various nuclear gamma sources with energy ranging from 59.6-keV to 660-keV.
Superconducting nanostripe single-photon detectors (SNSPDs) represent key components in silicon quantum photonic integrated circuits (SiQuPICs). They provide good timing precision, low dark counts, and high efficiency. The design, fabrication, and characterization of SiQuPICs comprising SNSPDs coupled to dielectric optical waveguides are the core objectives of our work. The detectors are positioned directly on the dielectric waveguide core to increase photon absorption by the superconducting nanostripes. We also present results on the SPICE circuit modeling of traveling-wave SNSPDs integrated with Si3N4/SiO2 optical waveguides.
We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype
experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering
stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast and efficient detection of visible to nearinfrared
photons with almost negligible dark counts. Our latest devices are pigtailed structures with coupling between
the SSPD structure and a single-mode optical fiber achieved using a micromechanical photoresist ring placed directly
over the meander. The above arrangement withstands repetitive thermal cycling between liquid helium and room
temperature, and we can reach the coupling efficiency of up to ~33%. The system quantum efficiency, measured as the
ratio of the photons counted by SSPD to the total number of photons coupled into the fiber, in our early devices was
found to be around 0.3 % and 1% for 1.55 &mgr;m and 0.9 &mgr;m photon wavelengths, respectively. The photon counting rate
exceeded 250 MHz. The receiver with two SSPDs, each individually biased, was placed inside a transport, 60-liter
liquid helium Dewar, assuring uninterrupted operation for over 2 months. Since the receiver's optical and electrical
connections are at room temperature, the set-up is suitable for any applications, where single-photon counting capability
and fast count rates are desired. In our case, it was implemented for photon correlation experiments. The receiver
response time, measured as a second-order photon cross-correlation function, was found to be below 400 ps, with
timing jitter of less than 40 ps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.