This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The Coronagraph Instrument (CGI) will be required to operate with low signal flux for long integration times, demanding all noise sources are kept to a minimum. The Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras due its ability to operate with sub-electron effective read noise values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterized and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Effciency (CTE) of the device throughout the mission lifetime. Irradiation at the nominal instrument operating temperature has the potential to provide the best estimate of performance degradation that will be experienced in-flight, since the final population of silicon defects has been shown to be dependent upon the temperature at which the sensor is irradiated.
Here we present initial findings from pre- and post- cryogenic irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST coronagraph instrument. The motivation for irradiation at cryogenic temperatures is discussed with reference to previous investigations of a similar nature. The results are presented in context with those from a previous room temperature irradiation investigation that was performed on a CCD201-20 operated under the same conditions. A key conclusion is that the measured performance degradation for a given proton fluence is seen to measurably differ for the cryogenic case compared to the room temperature equivalent for the conditions of this study.
Throughout the lifetime of a space-based mission the detector will be bombarded by high-energy particles and gamma rays. As time progresses, the radiation will damage the detectors, causing the Charge Transfer Efficiency (CTE) to decrease due to the creation of defects or “traps” in the silicon lattice of the detector. The defects create additional energy levels between the valence and conduction band in the silicon of the detector. Electrons or holes (for n-channel or p-channel devices respectively) that pass over the defect sites may be trapped. The trapped electrons or holes will later be emitted from the traps, subject to an emission-time constant related to the energy level of the associated defect. The capture and emission of charge from the signal leads to a characteristic trailing or “smearing” of images that must be corrected to enable the science goals of a mission to be met.
Over the past few years, great strides have been taken in the development of the pocket-pumping (or strictly-speaking “trap pumping”) technique. This technique not only allows individual defects (or traps) within the device to be located to the sub-pixel level, but it enables the investigation of the trap parameters such as the emission time constant to new levels of accuracy. Recent publications have shown the power of this technique in characterising a variety of different defects in both n- and p-channel devices and the potential for use in correction techniques, however, we are now exploring not only the trap locations and properties but the life cycle of these traps through time after irradiation. In orbit, most devices will be operating cold to suppress dark current and the devices are therefore cold whilst undergoing damage from the radiation environment. The mobility of defects varies as a function of temperature such that the mix of defects present following a cryogenic irradiation may vary significantly from that found following a room temperature irradiation or after annealing. It is therefore essential to study the trap formation and migration in orbit-like conditions and over longer timescales.
In this paper we present a selection of the latest methods and results in the trap pumping of n- and p-channel devices and demonstrate how this technique now allows us to map radiation-induced defects in CCDs through both space and time.
The sensor operates in a rolling shutter mode incorporating reset level subtraction resulting in a mean pixel readout noise of 4.25 electrons rms. The full well has been measured to be 34000 electrons in a previous study, resulting in a dynamic range of up to 8000. These performance characteristics have led to the CIS115 being chosen for JANUS, the high-resolution and wide-angle optical camera on the JUpiter ICy moon Explorer (JUICE).
The three year science phase of JUICE is in the harsh radiation environment of the Jovian magnetosphere, primarily studying Jupiter and its icy moons. Analysis of the expected radiation environment and shielding levels from the spacecraft and instrument design predict the End Of Life (EOL) displacement and ionising damage for the CIS115 to be equivalent to 1010 10 MeV protons cm-2 and 100 krad(Si) respectively. Dark current and image lag characterisation results following initial proton irradiations are presented, detailing the initial phase of space qualification of the CIS115. Results are compared to the pre-irradiation performance and the instrument specifications and further qualification plans are outlined.
The JANUS instrument is designated to be the scientific imager on-board the spacecraft with a wavelength range between 400 nm and 1000 nm and consists of a catoptric telescope coupled to a CMOS detector [3], specifically the CIS115 monolithic active pixel sensor supplied by e2v technologies[3]. A CMOS sensor has been chosen due to a combination of the high radiation tolerance required for all systems aboard the spacecraft and its capability of operating with integration times as low as 1 ms, which is required to prevent blur when imaging the moons at fast ground velocities since the camera has no mechanical shutter. However, an important consideration of using CMOS in high radiation environments is the generation of defects or defect clusters that result in pixels exhibiting Random Telegraph Signal (RTS)[5].
A study of RTS effects in the CIS115 has been undertaken, and the method applied to identify pixels in the array that display RTS behaviour is discussed and individual RTS-exhibiting pixels are characterised. The changes observed in RTS behaviour following irradiation of the CIS115 with protons is presented and the temperature dependence of the RTS behaviour is studied. The implications on the camera design and imaging requirements of the mission are examined.
View contact details
No SPIE Account? Create one