Light emission from single emitters, such as organic molecules, quantum dots, or nitrogen vacancies in nanocrystals strongly depends on the electromagnetic environment surrounding the emitter. The interaction of the emitter with strong local electromagnetic fields gives rise to an acceleration of the total decay rate (Purcell effect) which usually results in a broader emission line of the emitter, as well as an energy shift of the emission (Lamb shift). Plasmonic nanoantennas are versatile building blocks which localize light below the diffraction limit thanks to the extremely small effective mode volumes of localized surface plasmons, triggering out the possibility to tailor and exploit both the Purcell factor and the Lamb shift of nearby emitters, even reaching the strong coupling regime with polariton splitting in light emission.
We theoretically describe light emission from a variety of nanoantenna-emitter configurations and reveal the potential of plasmonic nanogaps to tailor and engineering the Purcell factor and Lamb shift of light emitted from single nearby emitters, in agreement with experimental evidence.
KEYWORDS: Mid-IR, Near field scanning optical microscopy, Upconversion, Microscopes, Sum frequency generation, Visible radiation, Vibration, Imaging spectroscopy, Surface properties, Spectroscopy
S-SNOM has transformed into a key actor for nanoscale imaging and spectroscopy. Extension of its abilities beyond the mere infrared absorption would be interesting for numerous technological developments.
Here, we use s-SNOM to study mid-IR to VIS sum-frequency generation (SFG), in which the sample’s SFG cross-section is enhanced by orders of magnitude by the microscope’s tip. Combining mid-IR and VIS illuminations on gold nanostructures and studying several molecular vibrations, we clarify the contribution of the tip onto this nonlinear optics process.
Our work could also lead to a novel near-field microscopy modality where non-linear optical properties could be probed at the nanoscale.
Accessing complete information about the emission from any quantum-optical systems requires tools capable of a frequency-resolved characterization of multi-photon transitions that would go beyond the standard g(2) correlation measurements. This is particularly important when analyzing systems which exhibit strong nonlinear response with multiple emission pathways. In this work, we calculate and analyze in details correlations of light emitted from two such canonical nonlinear optical systems, one incorporating Kerr nonlinear medium, and another exhibiting optomechanical coupling between light and quantized motion of a generic mechanical oscillator. We compare their single- and two-photon emission characteristics by employing a recently developed framework that allows us to calculate the frequency-resolved g(2) correlations between emitted photons with two arbitrary frequencies. Our analysis shows a rich landscape of bunching and antibunching associated with multi-photon emission events, and reveals the distinctive temporal characteristics of such processes. This new understanding provides a new asset to characterize and exploit nonlinear phenomena in Kerr and optomechanical systems in future experiments.
Our recent exploration of pulsed molecular optomechanics in plasmonic nanocavities shows unexpected and unusual nonlinear effects.
Extreme plasmonic nanocavities are created by placing spherical Au nanoparticles above a gold planar mirror, forming Nanoparticle-on-Mirror (NPoM) constructs. Depositing a self-assembled molecular layer under the Au nanoparticles ensures placement of these molecules inside the high-field mode.
We perform power-dependent ps SERS measurements with on- and off- resonant pump conditions for several molecular systems including biphenyl-4-thiol (BPT) and p-terphenyl thiol (TPDT). Key results are the reversible nonlinear saturation of emission from the anharmonicity of this optomechanical molecular system. Our earlier work showed the superlinear antiStokes emission [1], and more recently superlinear Stokes emission is also observed [2], arising from the driven vibrational dynamics.
In our new data we identify several new power-dependent dynamics. One is the irreversible reconfiguration of the molecular and atomic-scale Au morphologies, which in the ultrasmall volume nanocavities here is inevitable. We correlate these effects with the instantaneous effective temperature of the molecules and compare this to that of the electrons in the surrounding NPoM structure.
The second new effect is a reversible saturation which comes from the anharmonicity of the vibrations, and again is only seen in such tightly coupled nanocavities. These experiments reveal the complexity of molecular-light interactions in extreme nano-optics and open up new ways to treat molecules as optomechanical systems that can be used in device configurations.
[1] Single-molecule optomechanics in picocavities, Science 354, 726 (2016)
[2] Pulsed molecular optomechanics in plasmonic nanocavities, PRX 8, 011016 (2018)
Single-nanoantenna has intrigued vast interest due to its exceptional properties such as light harvesting and field enhancement, which provide the opportunities for strengthening light-matter interaction and efficient photon manipulation in nano-scale, as well as boosting nonlinear response. On the other hand, materials with structural or electronic phase transition have been employed to achieve large optical modulation contrast and order-unity switching, making them promising building blocks for high-performance optical circuits and devices with ultra-small footprint. In this context we demonstrate nano-scale all-optical modulation with single Au antennas fabricated on phase-transition material vanadium dioxide (VO2) substrate. VO2 films are deposited on boroaluminosilicate glass coated with a 30-nm layer of fluorine-doped tin oxide. The inclusion of this intermediate layer allows the production of VO2 films with low surface roughness and suitable thermochromic transition temperature. Then the nanoantennas are fabricated by e-beam lithography and subsequent 45-nm-thick gold deposition on the VO2 substrate. A 5-nm-thick Ti layer is used to improve the adhesion of the gold to the VO2. We use a pump-probe spectroscopy to characterize the modulation feature of the antenna/VO2. The pump beam at 1060 nm wavelength is used to introduce a local heating for VO2's phase transition and the probe beam from 1100 nm to 2000 nm wavelength is for readout of the modulated local transmission of antenna/VO2 hybrid owing to the dielectric environment change. A spatial modulation technique is also used to extract the differential transmission (ΔT/T) around the antennas. As a result, with pump pulse energy increasing to less than 1 nJ, the measured ΔT/T of single-antenna//VO2 hybrid exhibits substantial change that crossing the zero line and significant blue shift. As reported the ΔT/T obtained from spatial modulation spectroscopy is supposed to be proportional to the antenna’s extinction cross section. However, with the obtained negative values which lead to unphysical extinction cross sections less than 0, we believe the VO2 substrate beneath the antennas is highly involved as its optical property has been modified considerately. In addition, we observe that the pump-modulated differential transmission of the antenna/VO2 hybrid evidently depends on the polarisation of the pump when it is below a certain level. In this regime, the parallel pumping excites the longitudinal resonant mode while the perpendicular one only induces non-resonant absorption of antenna’s transverse mode. Going beyond this regime, the stronger pump transits the VO2 substrate from insulating phase into metallic phase completely, which dominates the dielectric environment change of the antenna, leading to nearly polarisation-independent modulation. The time for fully switch-on obtained from the pump-probe measurement is less than 50 ps. We also investigate the time response of the differential transmission dependent on the pulse repetition rate and substrate temperature, respectively. Less modulation depth with repetition rate over 2 MHz or base temperature higher than 40 °C suggest that the heat accumulation from adjacent pulses and thermal equilibrium time plays important roles in the achievable modulation speed. The single-antenna/VO2 structure may find applications in nano-scale optoelectronics for multiple functionalities including modulation, memory and so on.
Surface-Enhanced Raman Scattering (SERS) is a fundamental spectroscopic technique that allows to access the rich vibrational structure of molecules. A typical SERS configuration with a molecule located in a plasmonic cavity acting as an optical nanoantenna enhances the vibrational (Stokes or anti-Stokes) signal of the molecule. A number of recent implementations of Raman experiments in plasmonic nanocavities appear to provide results which escape the standard description of the Raman process based on the classical treatment of the electromagnetic fields enhancement inside the cavity.
We establish a novel analogy between non-resonant SERS in molecular spectroscopy and typical optomechanical processes. By adopting an optomechanical hamiltonian which describes the interaction between cavity plasmons and molecular vibrations, we are able to trace the quantum dynamics of both plasmons and vibrations in a SERS process. The solution of the master equation of this optomechanical hamiltonian allows to identify novel quantum effects such as the existence of different regimes of molecular vibrational build-up: a thermal vibrational regime, a vibrational pumping regime, and a strongly nonlinear vibrational regime, which emerge as a consequence of the quantum dynamics induced by the optomechanical interaction. Correlations between the Stokes and anti-Stokes Raman signals can also be traced for different temperatures and pumping powers.
The presence of strong optomechanical effects in Raman has been recently addressed experimentally in special "picocavities" formed by a few metallic atoms in a plasmonic cavity. The strong optomechanical coupling achieved in this situation is found to activate the pumping regime in the Raman signal, thus corroborating the validity of this description.
We investigated the interactions between localized plasmons in gold nanorods and excitons in J-aggregates and were able to track an anticrossing behavior of the hybridized modes both in the extinction and in the photoluminescence spectra of this hybrid system. We identified the nonlinear optical behavior of this system by transient absorption spectroscopy. Finally using magnetic circular dichroism spectroscopy we showed that nonmagnetic organic molecules exhibit magnetooptical response due to binding to a plasmonic nanoparticles. In our experiments we also studied the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states
In this work we study how plasmon modes of gold dimers are affected by a molecular bridge connecting both
particles. Different models for the linker are considered to envisage the relation between the spectral changes
observed in the extinction spectra and the electronic transport through the molecules. Depending on the size
and nature of the molecular linker two different modes, known as BDP (Bonding Dimer Plasmon) and CTP
(Charge Transfer Plasmon), are excited. Furthermore, when the molecular linker has an excitonic resonance,
new spectral features emerge due to the plasmon-exciton coupling.
Collective oscillations of valence electrons in metallic materials determine their optical response. The energy and
strength of these surface oscillations are a function of the shape, size and coupling of the nanoparticles. With the use of a
boundary element method (BEM), we solve Maxwell's equations to calculate light scattering and surface modes in
nanorods that are commonly used as hosts and/or samples in different field-enhanced scanning-probe microscopies and
spectroscopies. We calculate the near-field and far-field response of nanorods and show that different geometrical
terminations of the rods give different optical response in the far field for short rod lengths. For longer lengths, the
response of rods with different terminations becomes more similar. The near field features of the ends become most
evident close to the rod structural features that define the end capping. We identify four regimes for the separation
between nanorod pairs that provide different coupling between nanorods. We also show that the size dependence of the
nanorod response is characterized by a rod radius that gives a minimum wavelength for the dipolar response. For thicker
and thinner rods, the response redshifts.
We report experimental and theoretical results on the effect of electromagnetic coupling between metal particles in surface-enhanced Raman scattering (SERS). Model calculations of the near-field optical properties of Ag and Au nanoparticle-aggregates show that the electromagnetic surface-enhancement factor can reach 11 orders-of-magnitude in gaps between nearly touching particles. Single particles exhibit a much weaker enhancement, unless the particles contain extremely sharp surface protrusions. Data on spectral fluctuations in single-molecule SERS and measurements on the efficiency of nanofabricated SERS substrates give experimental support for the idea that an efficient interparticle coupling is a necessary requirement for an ultra-high surface-enhancement. We suggest a route for biorecognition induced coupling of metal particles for use in biosensing applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.