The junction temperature of red (AlGaInP), green (GaInN), blue (GaInN), and ultraviolet (GaInN) light-emitting diodes (LEDs) is measured using the temperature coefficients of the diode forward voltage and of the emission-peak energy. The junction temperature increases linearly with DC current as the current is increased from 10 mA to 100 mA. For comparison, the emission-peak-shift method is also used to measure the junction temperature. The emission-peak-shift method is in good agreement with the forward-voltage method. The carrier temperature is measured by the high-energy-slope method, which is found to be much higher than the lattice temperature at the junction. Analysis of the experimental methods reveals that the forward-voltage method is the most sensitive and its accuracy is estimated to be ± 3°C. The peak position of the spectra is influenced by alloy broadening, polarization, and quantum confined Stark effect thereby limiting the accuracy of the emission-peak-shift method to ±15°C. A detailed analysis of the temperature dependence of a tri-chromatic white LED source (consisting of three types of LEDs) is performed. The analysis reveals that the chromaticity point shifts towards the blue, the color-rendering index (CRI) decreases, the color temperature increases, and the luminous efficacy decreases as the junction temperature increases. A high CRI > 80 can be maintained, by adjusting the LED power so that the chromaticity point is conserved.
The performance characteristics of white light sources based on a multiple-LED approach, in particular dichromatic and trichromatic sources are analyzed in detail. Figures of merit such as the luminous efficacy, color temperature, and color rendering capabilities are provided for a wide range of primary emission wavelengths. Spectral power density functions of LEDs are assumed to be thermally and inhomogeneously broadened to a full width at half maximum of several kT, in agreement with experimental results. A gaussian line shape is assumed for each of the emission bands. It is shown that multi-LED white light sources have the potential for luminous efficacies greater than 400 lm/W (dichromatic source) and color rendering indices of greater than 90 (trichromatic source). Contour maps for the color rendering indices and luminous efficacies versus three wavelengths are given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.