Cordierite materials can be used as a reflected optical surface for astronomical space and ground-based telescope due to their high rigidity and low CTE(Coefficient of Thermal Expansion) which is ±1.94×10⁻⁸ m/°C. Using Cordierite materials in astronomical telescopes requires polishing techniques to control quantitatively. Therefore, it is essential to study the material removal properties using Tool Influence Function (TIF), which plays an important role in improving optical performance. In this paper, we introduce the characteristics of the initial Tool Influence Function (TIF) on Cordierite and SiC substrates. As a result, a material removal coefficient of 22.38 was obtained for Cordierite, while SiC achieved a coefficient of 6.01. Additionally, the repeatability was 95.73% ± 1.98 for Cordierite and 89.74% ± 4.39 for SiC.
The Sun-Earth Lagrange point L4 is the most stable location among the five Lagrange points at 1 AU. The L4 mission affords a clear and wide-angel view of the Sun-Earth line for the study of the Sun-Earth, Sun-Moon, and Sun-Mars connections from remote-sensing observations. The L4 mission will significantly contribute to advancing heliophysics science, improving the capability of space weather forecasting, and extending space weather studies beyond near-Earth space. This presentation outlines the importance of L4 observations and advocates comprehensive and coordinated observations of the heliosphere at multi-points including other planned L1 and L5 missions. In addition, conceptual designs are provided for an optical telescope for solar H-alpha and photospheric magnetic field observation, and a EUV telescope for solar corona.
The quality of mirror surface is a crucial factor in enhancing the optical performance of space telescopes, and the Tool Influence Function (TIF) is an important parameter that determines the surface quality by measuring the unit removal volume. Although TIF studies have traditionally been performed under static conditions, there is a growing interest in studying dynamic TIF using a moving polishing head. In this presentation, we report on initial dynamic TIF patterns on SiC mirror surfaces for Space Optical Telescopes using the Orthogonal Velocity Tool (OVT) at KASI.
In this paper, we investigate several bonding methods for attaching lateral flexures to the side of a mirror in order to mitigate the potential long-term instability caused by thermal stress. To analyze the behavior of the mirror, bonding, and flexures under different mechanical and thermal loads, we utilize finite element models and examine three key aspects of the flexure bonding: the bonding area, the use of an additional block for bonding, and the choice of flexure material. Our study utilizes the primary mirror of the GEMINI telescope as a sample application and for validation purposes. Through our simulations and analysis, we aim to address various options for the flexure-bonding design and optimization.
KEYWORDS: Thermal analysis, Design and modelling, Thermal modeling, Fused deposition modeling, Solar energy, Optical telescopes, Optical surfaces, Space operations, Satellites, Control systems
Space telescopes are exposed to extreme hot and cold temperature variations in the space environment depending on their orbit conditions. These temperature variations cause a significant effect on the opto-mechanical structures and lead to the final optical performance degradation. The development of space optical telescopes must achieve a thermally stable and reliable system through thermal analysis for on-orbit temperature prediction and thermal control design maintaining all components within their operating/survival temperature limits during entire mission phases. In this paper, we report the analysis results of passive and active thermal design for the ROKITS mission based on on-orbit thermal analysis taking into account the worst hot and cold conditions in the space environment using thermal analysis program - Thermal Desktop®, SINDA/FLUINT®.
To minimize the artifacts in Point Spread Functions (PSFs) of space telescopes such as the 6 major spikes shown in the star image observed by the James Webb Space Telescope, which are caused by the primary mirror outer boundary and the gaps between segments, an alternative method to segmentize large circular telescope mirror is proposed. From the fact that the strong spikes are due to the parallel-ness of all linear boundary edges and gaps in the current hexagonal segmentation approach, the proposed segmentation methodology minimizes such parallel-ness. The proposed method comes with a set of formulas that can assist the design process including the systematic calculation of number of segments and the size of each segment to cover the entire mirror pupil area. Some example PSFs of a few possible segmented mirrors with the proposed formalism will be presented.
This conference presentation was prepared for the Ground-based and Airborne Telescopes IX conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
Due to the high toughness of SiC material, in general, the polishing time of a SiC mirror has been challenging to determine by optician. In the optical shop, optician normally enters input parameters into a polishing machine prior to polish out the mirror surface. The target surface removal rate, specified by an optician, are highly depending on polishing schedule. A very tight polishing schedule commonly thrusts adventurous larger target quantities on the optician. However, the target numbers should be determined by the reliability of relationships between the machine input parameter and output removal rate. In this paper, we introduce an initial model which can reliably suggest machine input parameters for polishing head. These parameters can control polishing processes to achieve the target TIF (Tool Influence Function) depth which is an unit polishing removal quantity on the SiC mirror optical surfaces.
We investigated the geometrical characteristics of circular-aperture off-axis parabolic (OAP) mirror segments to clarify the meaning of the loosely defined word “center” used in the literature and in documents to describe OAPs. We proposed the elliptical aperture center of an OAP as the definition of the center. The off-axis distance (OAD) is the vertical distance from the reference optical axis to the aperture center. In addition, the OAD can be varied depending on the desired center of a circular aperture to select the part of a parallel beam for focusing. The radius of the circular aperture becomes the minor-axis semidiameter of the elliptical aperture of the OAP. These geometrical parameters were systematically defined, derived, and/or analyzed in the context of optical engineering applications. Based on a set of those fundamental parameters, an intrinsic datum point utilizing the deepest point on the OAP surface was presented. The datum point provides a well-defined reference co-ordinate frame for locating or aligning an OAP within various astronomical telescope designs, instrument manufacturing and assembly processes, and optical system alignment and testing applications.
We investigated the definition for circular off-axis aspheric mirrors (COAMs). The clear opening of the COAM obtained by projecting a circular aperture on the aspheric surface does not form a plane but a curved surface. To solve this problem, we propose to use a plane to cut the aspheric surface to obtain a COAM. The COAM has three characteristics: (i) an elliptical opening; (ii) the major axis of the opening lies on the meridional plane containing the original optical axis of the aspheric surface and the minor axis lies on the sagittal plane perpendicular to the meridian plane; and (iii) it is not deepest at the center of the ellipse. The third characteristic suggests two methods for defining the COAM using a plane: (i) with the center of the elliptical opening as a reference and (ii) with the deepest point of the mirror as a reference. All the formulas required to obtain the desired COAM using the two methods are presented.
We investigated the definition for circular off-axis aspheric mirrors (COAMs). The clear opening of the COAM obtained by projecting a circular aperture on the aspheric surface does not form a plane but a curved surface. To avoid ambiguity due to the non-planar opening, we propose to use a plane to cut the aspheric surface to obtain a COAM. The COAM has three characteristics: 1) an elliptical opening; 2) the major axis of the opening lies on the meridional plane containing the original optical axis of the aspheric surface, and the minor axis lies on the sagittal plane perpendicular to the meridian plane; and 3) it is not deepest at the center of the ellipse. The third characteristic suggests two methods for defining the COAM using a plane: 1) with the center of the elliptical opening as a reference and 2) with the deepest point of the mirror as a reference. All the formulas required to obtain the desired COAM using the two methods are presented.
The Fast-steering Secondary Mirror (FSM) of Giant Magellan Telescope (GMT) consists of seven 1.1 m diameter circular segments with an effective diameter of 3.2 m, which are conjugated 1:1 to the seven 8.4 m segments of the primary. Each FSM segment contains a tip-tilt capability for fast guiding to attenuate telescope wind shake and mount control jitter by adapting axial support actuators. Breakaway System (BAS) is installed for protecting FSM from seismic overload or other unknown shocks in the axial support. When an earthquake or other unknown shocks come in, the springs in the BAS should limit the force along the axial support axis not to damage the mirror. We tested a single BAS in the lab by changing the input force to the BAS in a resolution of 10 N and measuring the displacement of the system. In this paper, we present experimental results from changing the input force gradually. We will discuss the detailed characteristics of the BAS in this report.
KEYWORDS: Mirrors, Telescopes, Actuators, Space telescopes, Off axis mirrors, Integrated modeling, Interfaces, Optical instrument design, Phase transfer function, Control systems
The Fast-Steering Secondary Mirror (FSM) of Giant Magellan Telescope (GMT) consists of seven 1.1m diameter segments with effective diameter of 3.2m. Each segment is held by three axial supports and a central lateral support with a vacuum system for pressure compensation. Both on-axis and off-axis mirror segments are optimized under various design considerations. Each FSM segment contains a tip-tilt capability for guiding to attenuate telescope wind shake and mount control jitter. The design of the FSM mirror and support system configuration was optimized using finite element analyses and optical performance analyses. The design of the mirror cell assembly will be performed including sub-assembly parts consisting of axial supports, lateral support, breakaway mechanism, seismic restraints, and pressure seal. . In this paper, the mechanical results and optical performance results are addressed for the optimized FSM mirror and mirror cell assembly, the design considerations are addressed, and performance prediction results are discussed in detail with respect to the specifications
The Giant Magellan Telescope (GMT) will feature two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and consists of seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fast guiding to attenuate telescope wind shake and mount control jitter. This tiptilt capability thus enhances performance of the telescope in the seeing limited observation mode. The tip-tilt motion of the mirror is produced by three piezo actuators. In this paper we present a simulation model of the tip-tilt system which focuses on the piezo-actuators. The model includes hysteresis effects in the piezo elements and the position feedback control loop.
We investigated the geometrical characteristics of off-axis parabolic mirrors (OPMs). We found that the clear aperture of an OPM is an ellipse with a set of major/minor diameters, and the center of the elliptical aperture does not correspond to the deepest depth of the mirror. Despite this property, the distance from the reference optical axis (ROA) of the parent parabolic mirror to the deepest point of the OPM is equal to the distance from the ROA to the center of the elliptical aperture of the OPM. This enables one to define an OPM by projecting a aperture perpendicular to the ROA on a parabolic surface.
The Giant Magellan Telescope (GMT) will be equipped with two Gregorian secondary mirrors; a fast-steering secondary mirror (FSM) for seeing-limited operations and an adaptive secondary mirror (ASM) for adaptive optics observing modes. The FSM has an effective diameter of 3.2 m and is comprised of seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary mirror. Each FSM segment has a tip-tilt capability for fast guiding to attenuate telescope wind shake and jitter. The FSM is mounted on a two-stage positioning system; a macro-cell that positions the entire FSM segments as an assembly and seven hexapod actuators that position and drive the individual FSM segments. In this paper, we present a technical overview of the FSM development status. More details in each area of development will be presented in other papers by the FSM team.
The Giant Magellan Telescope (GMT) will be equipped with two Gregorian secondary mirrors: a fast-steering mirror (FSM) system for seeing-limited operations and an adaptive secondary mirror (ASM) for adaptive optics observing modes. The FSM has an effective diameter of 3.2 m and is comprised of seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment has a tip-tilt capability for fast guiding to attenuate telescope wind shake and jitter. To verify the tip-tilt performance at various orientations, we performed tiptilt tests using a conceptual prototype of the FSM (FSMP) which was developed at KASI for R&D of key technologies for FSM. In this paper, we present configuration, methodology, results, and lessons from the FSMP test which will be considered in the development of FSM.
The Fast Steering Secondary Mirror (FSM) for the Giant Magellan Telescope (GMT) will have seven 1.05 m diameter circular segments and rapid tip-tilt capability to stabilize images under wind loading. In this paper, we report on the assembly, integration, and test (AIT) plan for this complex opto-mechanical system. Each fast-steering mirror segment has optical, mechanical, and electrical components that support tip-tilt capability for fine coalignment and fast guiding to attenuate wind shake and jitter. The components include polished and lightweighted mirror, lateral support, axial support assembly, seismic restraints, and mirror cell. All components will be assembled, integrated and tested to the required mechanical and optical tolerances following a concrete plan. Prior to assembly, fiducial references on all components and subassemblies will be located by three-dimensional coordinate measurement machines to assist with assembly and initial alignment. All electronics components are also installed at designed locations. We will integrate subassemblies within the required tolerances using precision tooling and jigs. Performance tests of both static and dynamic properties will be conducted in different orientations, including facing down, horizontal pointing, and intermediate angles using custom tools. In addition, the FSM must be capable of being easily and safely removed from the top-end assemble and recoated during maintenance. In this paper, we describe preliminary AIT plan including our test approach, equipment list, and test configuration for the FSM segments.
Single Point Diamond Turning (SPDT) has the potential to cost-effectively manufacture optical materials such as metals and plastic types. However, SPDT generally leaves tool marks on the machined surfaces, which creates problems that can deteriorate the optical performance. Several processes have been studied to eliminate the tool marks caused by SPDT, but it was difficult to carry out without the additional defects like sub-surface damages and other tool marks. To overcome this weakness, we investigated the Magneto-Rheological Finishing (MRF) process to effectively remove the periodic micro structures without surface deterioration for optical performance. The workpiece used in the experiment is a mirror plated with electroless nickel-phosphorus. Through the processing of the SPDT, an initial surface gets periodic tool marks, which have a height of 1.1 μm and a pitch of 20 μm. We studied on the reduction rate of the turning marks by the MRF process with some different conditions of uniform removal. The quantitative analysis of the surface roughness and residual marks was performed using a scanning low-coherence interferometer and through the Power Spectral Density (PSD) respectively. The results showed that reduction rates of tool marks depend on the angles (0, 45, and 90 degs) between the turning direction of the tool marks and the rotation direction of MR wheel. In the case of 45 degs, it indicated the fastest reduction rate.
KEYWORDS: Mirrors, Telescopes, Optical fabrication, Telescopes, Control systems, Prototyping, Control systems design, Space telescopes, Surface finishing, Manufacturing, Profilometers
The Giant Magellan Telescope (GMT) will be featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and built as seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope sub-apertures and fast guiding to attenuate telescope wind shake and mount control jitter. This tip-tilt capability thus enhances performance of the telescope in the seeing limited observation mode. As the first stage of the FSM development, Phase 0 study was conducted to develop a program plan detailing the design and manufacturing process for the seven FSM segments. The FSM development plan has been matured through an internal review by the GMTO-KASI team in May 2016 and fully assessed by an external review in June 2016. In this paper, we present the technical aspects of the FSM development plan.
An off-axis optical system can effectively avoid some problems, such as aberrations, shielded area created by the secondary mirror and a narrow field of view (FOV), while an on-axis optical system has the problems. Inspired by the consideration, the off-axis optical system is generally used for hyperspectral sensors and telescopes. However, there are several obstacles limiting the productivity of the off-axis optics in fabrication and measurement processes. In this study, to overcome this weakness, we suggests a new fabrication technique using a customized jig, not separated from the work-piece. A convex aspheric mirror and the off-axis mirror are fabricated by Single Point Diamond Turning Machine (SPDTM) for comparison analysis of surface state. The mirrors are made from aluminum (Al6061-T6) and used for the reflectors of a coastal water remote sensing system. We show fast machining and simple measurement in comparison with traditional off-axis single machining and measurement, provide performance results, such as form accuracy and surface roughness measured by both contact 3D profilometer (UA3P) and non-contact 3D profiler (CCI-Optics). The customized ultra-precision machining process can be effectively used for complex off-axis mirror fabricating.
KEYWORDS: Polishing, Silicon carbide, Surface finishing, Chemical vapor deposition, Mirrors, Polishing equipment, Data conversion, Data processing, Patents, Data analysis
Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.
The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed
spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the
wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a
resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for
separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald
Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel. The spectrograph employs two 2048 x 2048
pixel Teledyne Scientific and Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The
instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly
identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows
the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m)
rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical
components were completed in 2013. We describe the major design characteristics of the instrument including the
system requirements and the technical strategy to meet them. We also present early performance test results obtained
from the commissioning runs at the McDonald Observatory.
IGRINS, the Immersion GRating INfrared Spectrometer includes an immersion grating made of silicon and observes
both H-band (1.49~1.80 μm) and K-band (1.96~2.46 μm), simultaneously. In order to align such an infrared optical
system, the compensator in its optical components has been adjusted within tolerances at room temperature without
vacuum environment. However, such a system will ultimately operate at low temperature and vacuum with no
adjustment mechanism. Therefore a reasonable relationship between different environmental variations such as room and
low temperature might provide useful knowledge to align the system properly. We are attempting to develop a new
process to predict the Wave Front Error (WFE), and to produce correct mechanical control values when the optical
system is perturbed by moving the lens at room temperature. The purpose is to provide adequate optical performance
without making changes at operating temperature. In other words, WFE was measured at operating temperature without
any modification but a compensator was altered correctly at room temperature to meet target performance. The ‘no
adjustment’ philosophy was achieved by deterministic mechanical adjustment at room temperature from a simulation
that we developed. In this study, an achromatic doublet lens was used to substitute for the H and K band camera of
IGRINS. This novel process exhibits accuracy predictability of about 0.002 λ rms WFE and can be applied to a cooled
infrared optical systems.
In order to meet volume requirement and provide high image quality for a Long Range Oblique Photography (LOROP)
system, we adopted Cassegrain-type telescope with lens compensators for the operation in both regions of 0.6 ~ 0.9 μm
(EO channel) and 3.7 ~ 4.8 μm (IR channel). To provide dual-band functionality, the tilted plane-parallel plate is applied
and acts as a beam splitter located in the space between primary and secondary mirrors. The system is near to telecentric
in detector space (EO) and telecentric in intermediate image space (IR). The telecentricity provides image height
constancy while adjusting the focus. The optical system includes Back Scan Mechanism (BSM) to compensate image
blurring for integration time.
The fabrication and optical performance of a Cassegrain type telescope that employs a field corrector depends on the
conic constant of the primary mirror. The design of the field corrector calls for different choices on mirror asphericity
which imply a departure from the nominal Cassegrain or Ritchey-Chrétien solutions. This departure may not be
acceptable given that the telescope would not operate properly without the field corrector. In this paper we present a
study of the variation of mirror conic constant and field corrector choice of some existing telescopes. We also discuss
some trade-offs in the design of a telescope with a field corrector.
The Korea Astronomy and Space Science Institute (KASI) is building the KASI Near Infrared Camera System (KASINICS) for the 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. With KASINICS we will mostly do time monitoring observations, e.g., thermal variations of Jovian planet atmospheres, variable stars, and blazars. We use a 512 x 512 InSb array (Aladdin III Quadrant, Raytheon Co.) for L-band observations as well as J, H, and Ks-bands. The field-of-view of the array is 6 x 6 arcmin with 0.7 arcsec/pixel. Since the SOAO 61-cm telescope was originally designed for visible band observations, we adopt an Offner relay optical system with a Lyot stop to eliminate thermal background emission from the telescope structures. In order to minimize weight and volume, and to overcome thermal contraction problems, we optimize the mechanical design of the camera using the finite-element-method (FEM) analysis. Most of the camera parts including the mirrors are manufactured from the same melt of aluminum alloy to ensure homologous contraction from room temperature to 70 K. We also developed a new control electronics system for the InSb array (see the other paper by Cho et al. in this proceedings). KASINICS is now under the performance test and planned to be in operation at the end of 2006.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.