We report on an eye safe fiber laser generating >5 Watts of average power at 50 kHz packaged in a
cylinder measuring 6" in diameter and 3.75" in length to show compatibility with advanced seeker
concepts. To our knowledge, this represents the highest average power per unit volume from an eye
safe pulsed fiber laser generating multi-Watts of average power.
Raytheon has developed a new tactical form-factored, imaging LADAR (LAser Detection And Ranging) seeker. In a joint activity with AMRDEC, the seeker was used in a tower test data collection at the Russell Measurement Facility at Redstone Arsenal, Alabama. The seeker collected 3D imagery of fixed structures and vehicles embedded in various clutter backgrounds for use in analysis of computer vision and automatic target recognition techniques. This paper presents a high-level overview of the seeker, a description of the test activities, representative LADAR range and intensity imagery collected during the test, and 3D rendered scenes constructed from the imagery.
The U.S. Army Research, Development and Engineering Command (RDECOM) is developing approaches and processes that will exploit the characteristics of current and future Laser Radar (LADAR) sensor systems for critical man-in-the-loop tactical processes. The importance of timely and accurate target detection, classification, identification, and engagement for future combat systems has been documented and is viewed as a critical enabling factor for FCS survivability and lethality.
Recent work has demonstrated the feasibility of using low cost but relatively capable personal computer class systems to exploit the information available in Ladar sensor frames to present the war fighter or analyst with compelling and usable imagery for use in the target identification and engagement processes in near real time. The advantages of LADAR imagery are significant in environments presenting cover for targets and the associated difficulty for automated target recognition (ATR) technologies.
The Aviation and Missile Research, Development and Engineering Center (AMRDEC) of the U.S. Army Aviation and Missile Command (AMCOM) conducted a series of Captive Flight Tests (CFT) gathering urban Laser Radar (LADAR) imagery at the McKenna Military Operations in Urban Terrain (MOUT) facility located at Fort Benning, Georgia, July 18 through August 4, 2001.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.