We report on the development of HiLight, a new multiphysics simulation platform for advanced photonics with interactive modules dedicated to the study of the propagation of light in multitude of spatially structured optical media, including nonlocal and nonlinear media, optical lattices with atomic gases and plasmas, among others.
The realization of tabletop optical analogue experiments of superfluidity relies on the engineering of suitable optical media, with tailored optical properties. This work shows how quantum atomic optical systems can be used to develop highly tunable optical media, with localized control of both linear and nonlinear susceptibility. Introducing the hydrodynamic description of light, the superfluidity of light in these atomic media is investigated through GPU-enhanced numerical simulations, with the numeric observation of the superfluidic signature of suppressed scattering through a defect
In this paper we discuss the development of a fast ray-tracing solver for complex anisotropic uniaxial optical media based on heterogeneous supercomputing in GPGPU using PyOpenCl. This solver simulates both the propagation of ordinary and extraordinary rays, while taking into account the polarization rotation introduced by position dependent modulations of the optical axis of the medium. We demonstrate the application of this solver by simulating the generation of polarization caustics in random uniaxial optical media.
In this work we develop a theoretical model to describe the propagation of an optical pulse in a 4-level atomic system. We investigate the existence of dissipative soliton solutions and analyze the stability of these solitary waves, comparing the analytical results with computational simulations based on the effective (1+1)-dimensional model derived from the Maxwell-Bloch equation under the slowly-varying envelope approximation.
Here we explore the possibility of controlling the inhomogeneities in quasi-1D Bose-Einstein condensates using a spatial variation of the transverse confinement potential and explore different optical strategies to realize these pinched traps. Furthermore, we also present some early stage results on the dynamics of matter-wave solitons in such systems using computational simulations of the full 3D Gross-Pitaevskii equation.
In this paper we analyse the effects of the Doppler shift on the optical response of a nanoplasmonic system. Through the development of a simplified model based on the Hydrodynamic Drude model we analyse the response of a quantum dot embed in a moving fluid, predicting the Doppler broadening and the shift of the spectral line.
In this paper we report on the development of a numerical solver for Vlasov equations based on heterogeneous supercomputing using GPGPUs. The solver adapts techniques from many-body simulation, namely the particlein-cell approach, to describe the interaction between the electromagnetic field and atomic gas whose internal state can be described by the multilevel Bloch equations. We also present the benchmark and performance analysis of the code. We investigate the interaction between two coherent light beams, as a case of study to demonstrate the validation of the code.
Localized plasmons in metallic nanostructures present strong analogies with Quantum Mechanical problems of particles trapped in potential wells. In this paper we take this analogy further using the Madelung Formalism of Quantum Mechanics to express the fluid equations describing the charge density of the conduction electrons and corresponding interaction with light in terms of an effective generalized Non-linear Schr¨odinger equations. Within this context, it is possible to develop the analogy of a plasmonic atom and molecule that exhibits Rabi oscillations, Stark effect, among other Quantum Mechanical effects.
We present a numerical implementation of a solver for the Maxwell-Bloch equations to calculate the propagation of a light pulse in a nonlinear medium composed of an atomic gas in one, two and three dimensional systems. This implementation solves the wave equation of light using a finite difference method in the time domain scheme, while the Bloch equations for the atomic population in each point of the simulation domain are integrated using splitting methods. We present numerical simulations of atomic-gas systems and performance benchmarks.
The problem of electromagnetic wave propagation in time varying media is very old, but in recent years it has been revisited at a more fundamental level leading to the introduction of several new concepts, such as Time Refraction. These concepts explore the symmetries between space and time and can be transposed to different fields by establishing powerful analogies between effects in Electrodynamics, Optics and problems in Quantum Cosmology and in what is sometimes called Analogue Gravity. We examine the alteration of the ordinary (spatial) Fresnel laws of refraction at the interface between two media when the optical properties of one of the media varies in time.
Under specific conditions, there is a formal analogy between the fundamental equations of electromagnetism and relativistic gravitation, described by the Einstein field equations of general relativity. In this paper, we report on how we have used this analogy to implement a solver of the Einstein equations adapting algorithms initially developed for electromagnetism, combined with methods of heterogeneous supercomputing, in GPU that can achieve fast computing and exhibit good performance. We also present the results of the simulations used to validate our solver.
The realization of tabletop optical analogue experiments of superfluidity relies on the engineering of suitable optical media, with tailored optical properties. This work shows how quantum atomic optical systems can be used to develop highly tunable optical media, with localized control of both linear and nonlinear susceptibility. Introducing the hydrodynamic description of light, the superfluidity of light in these atomic media is investigated through GPU-enhanced numerical simulations, with the numeric observation of the superfluidic signature of suppressed scattering through a defect.
In this work we address the development of a fast solver of the ray-tracing equations based on heterogeneous supercomputing using PyOpenCL. We apply this solver to the study of gravitational lensing and light propagation in optical systems.
This paper presents a study for a fibre optic sensor based on quantum wires to detect and measure the amplitude and direction of a static electric field. This study is supported by the analogy of the fluid equations describing the free electrons in the quantum wires and the Madelung formalism of Quantum Mechanics. In this context, it is possible to construct a diatomic plasmonic molecule whose energy levels can be Stark shifted by an external electric field and readout using a light beam tuned to the Rabi oscillations of these levels. Choosing the adequate design parameters it is possible to estimate a sensitivity of 100nm/NC-1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.