SignificanceThe number of injections administered has increased dramatically worldwide due to vaccination campaigns following the COVID-19 pandemic, creating a problem of disposing of syringes and needles. Accidental needle sticks occur among medical and cleaning staff, exposing them to highly contagious diseases, such as hepatitis and human immunodeficiency virus. In addition, needle phobia may prevent adequate treatment. To overcome these problems, we propose a needle-free injector based on thermocavitation.AimExperimentally study the dynamics of vapor bubbles produced by thermocavitation inside a fully buried 3D fused silica chamber and the resulting high-speed jets emerging through a small nozzle made at the top of it. The injected volume can range from ∼0.1 to 2 μL per shot. We also demonstrate that these jets have the ability to penetrate agar skin phantoms and ex-vivo porcine skin.ApproachThrough the use of a high-speed camera, the dynamics of liquid jets ejected from a microfluidic device were studied. Thermocavitation bubbles are generated by a continuous wave laser (1064 nm). The 3D chamber was fabricated by ultra-short pulse laser-assisted chemical etching. Penetration tests are conducted using agar gels (1%, 1.25%, 1.5%, 1.75%, and 2% concentrations) and porcine tissue as a model for human skin.ResultHigh-speed camera video analysis showed that the average maximum bubble wall speed is about 10 to 25 m/s for almost any combination of pump laser parameters; however, a clever design of the chamber and nozzle enables one to obtain jets with an average speed of ∼70 m / s. The expelled volume per shot (0.1 to 2 μl) can be controlled by the pump laser intensity. Our injector can deliver up to 20 shots before chamber refill. Penetration of jets into agar of different concentrations and ex-vivo porcine skin is demonstrated.ConclusionsThe needle-free injectors based on thermocavitation may hold promise for commercial development, due to their cost and compactness.
Background and Objectives: We have previously demonstrated the efficacy of a non-invasive, non-contact, fast and
simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds in vitro. This system can
image highly-proliferating cellular processes (295/340 nm excitation/emission wavelengths) to study epithelialization in
a cultured wound model. The objective of the current work is to evaluate the suitability of u-FEI for monitoring wound
re-epithelialization in vivo.
Study Design: Full-thickness wounds were created in the tail of rats and imaged weekly using u-FEI at 295/340nm
excitation/emission wavelengths. Histology was used to investigate the correlation between the spatial distribution and
intensity of fluorescence and the extent of wound epithelialization. In addition, the expression of the nuclear protein
Ki67 was used to confirm the association between the proliferation of keratinocyte cells and the intensity of
fluorescence.
Results: Keratinocytes forming neo-epidermis exhibited higher fluorescence intensity than the keratinocytes not
involved in re-epithelialization. In full-thickness wounds the fluorescence first appeared at the wound edge where
keratinocytes initiated the epithelialization process. Fluorescence intensity increased towards the center as the
keratinocytes partially covered the wound. As the wound healed, fluorescence decreased at the edges and was present
only at the center as the keratinocytes completely covered the wound at day 21. Histology demonstrated that changes in
fluorescence intensity from the 295/340nm band corresponded to newly formed epidermis.
Conclusions: u-FEI at 295/340nm allows visualization of proliferating keratinocyte cells during re-epithelialization of
wounds in vivo, potentially providing a quantitative, objective and simple method for evaluating wound closure in the
clinic.
The skin contains several fluorescent molecules or fluorophores that serve as markers of structure, function and composition. UV fluorescence excitation photography is a simple and effective way to image specific intrinsic fluorophores, such as the one ascribed to tryptophan which emits at a wavelength of 345 nm upon excitation at 295 nm, and is a marker of cellular proliferation. Earlier, we built a clinical UV photography system to image cellular proliferation. In some samples, the naturally low intensity of the fluorescence can make it difficult to separate the fluorescence of cells in higher proliferation states from background fluorescence and other imaging artifacts -- like electronic noise. In this work, we describe a statistical image segmentation method to separate the fluorescence of interest. Statistical image segmentation is based on image averaging, background subtraction and pixel statistics. This method allows to better quantify the intensity and surface distributions of fluorescence, which in turn simplify the detection of borders. Using this method we delineated the borders of highly-proliferative skin conditions and diseases, in particular, allergic contact dermatitis, psoriatic lesions and basal cell carcinoma. Segmented images clearly define lesion borders. UV fluorescence excitation photography along with statistical image segmentation may serve as a quick and simple diagnostic tool for clinicians.
The stiffness or rigidity of the extracellular matrix (ECM) regulates cell response. Established mechanical tests to measure stiffness, such as indentation and tensile tests, are invasive and destructive to the sample. Endogenous or native molecules to cells and ECM components, like tryptophan and cross-links of collagen, display fluorescence upon irradiation with ultraviolet light. Most likely, the concentration of these endogenous fluorophores changes as the stiffness of the ECM changes. In this work we investigate the endogenous fluorescence of collagen gels containing fibroblasts as a non-invasive non-destructive method to measure stiffness of the ECM. Human fibroblast cells were cultured in three-dimensional gels of type I collagen (50,000 cells/ml). This construct is a simple model of tissue contraction. During contraction, changes in the excitation-emission matrix (a fluorescence map in the 240-520/290-530 nm range) of constructs were measured with a spectrofluoremeter, and changes in stiffness were measured with a standard indentation test over 16 days. Results show that a progressive increase in fluorescence of the 290/340 nm excitation-emission pair correlates with a progressive increase in stiffness (r=0.9, α=0.5). The fluorescence of this excitation-emission pair is ascribed to tryptophan and variations in the fluorescence of this pair correlate with cellular proliferation. In this tissue model, the endogenous functional fluorescence of proliferating fibroblast cells is a biomechanical marker of stiffness of the ECM.
Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.
High-speed video imaging was used to study the dynamic behavior of cavitation bubbles induced by a continuous wave (CW) laser into highly absorbing droplets water containing copper nitrate (CuNO4). The droplet lays horizontally on a glass surface and the laser beam (λ=975 nm) propagates vertically from underneath, across the glass and into the droplet. This beam is focused ζ=400 μm above the glass-liquid interface in order to produce the largest bubble as possible (Rmax ~ 1mm). In our experiment the thermocavitation bubbles are always in contact with the substrate, taking a hemispherical shape, regardless of where the laser focal point is, as opposed to the other methods that involved nano and picosecond laser pulses, where bubbles may nucleate and grow within the bulk of the fluid. We focus on the liquid jet which emerges out the droplet at velocities of about 3 m/s, due to the acoustic pressure wave (APW) emitted immediately after the bubble collapse, and after it breaks up into a secondary droplet or droplets depending of the droplet’s volume, showing an alternative way of droplet generator that is simplest, light and cheaper. The dynamics of cavitation bubbles in confined geometries (drops) offers a rich hydrodynamic and the liquid jet generated after the bubble collapse could be used like acoustic waveguide, as was showed by Nicolas Bertin et. al.
The cavitation phenomenon has been extensively studied by numerous researchers because the collapse of the
cavitation bubbles is responsible for a number of phenomena of interest in the fields of science and engineering,
such as: Luminescence, sonochemistry, cavitation damage, ultrasonic cleaning, etc. The most common methods
to produce cavitation bubbles are: pulsed lasers, electroforming, sonophoresis, radiofrequency, and Venturi
effect. In this paper we are interested in a method called thermocavitation, which is induced by low power, CW
laser radiation in a highly-absorbing solution of copper nitrate (CuNO4) dissolved in water. The bubble
formation occurs when an overheated region (~300°C) is created followed by explosive phase transition and the
formation of vapor-gas bubbles, which expand and later collapse very rapidly emitting intense acoustic
shockwaves. The characteristic effects of bubble dynamics, in particular the formation, growth, collapse and a
high-speed liquid jet at the moment of collapse are recorded using a high speed video camera (Phantom V7,
Version 9.1) with frame rates of up to one hundred thousand frames/s at different laser powers (62 to 200 mW).
The shockwaves are sufficiently energetic that they may be employed to generate deep lesions in biological
tissue models, such as agar gel and chicken breast samples as a preamble to future studies on thermocavitation
for tissue ablations. This approach of achieving thermocavitation is attractive due to the fact that it is generated
with low power CW lasers which decrease cost and complexity relative to other approaches.
In this work, we present a novel method of cavitation, thermocavitation, induced by CW low power laser radiation in a
highly absorbing solution of copper nitrate (CuNO4) dissolved in deionized water. The high absorption coefficient of the
solution (α=135 cm-1) produces an overheated region (~300cm-1) followed by explosive phase transition and consequently
the formation of an expanding vapor bubble, which later collapse very rapidly emitting intense acoustic shockwaves.
We study the dynamic behavior of bubbles formed in contact with solid interface as a function of laser power using high
speed video recording with rates of ~105 fps. The bubble grows regularly without any significant modification of its halfhemisphere
shape, it reaches its maximum radius, but it deforms in the final stage of the collapse, probably due to the
bubble adhesion to the surface. We also show that the maximum bubble radius and the shock-wave energy scales are
inversely with the beam intensity.
Thermocavitation is a mechanism induced by a focused CW laser beam into a high absorbing solution. As a result an
overheated region is created followed by explosive phase transition and consequently the formation of an expanding
bubble. Once the bubble reaches a cooler region it collapses very rapidly crating a shock wave. Thermocavitation can be
a useful tool for the generation of ultrasonic waves and controlled ablation with the important difference compared with
pulsed lasers that low power lasers are required. In particular, the above mentioned pressure waves may be capable of producing damage to substrates, for example, in metallic and dielectric thin films. In this work, we present an application of the thermocavitation phenomena which consist in the formation of micro-holes on thin films of titanium and Indium Tin Oxide (ITO) deposited on glass substrate. The micro holes can be employed as a micrometer light sources or spatial filters.
Some pH sensors based on optical fibers use organic dyes which are sensitive to the pH levels. Such dyes are deposited
over the fiber and they are supported by a matrix, (TiO2) in this case. In this work, we present the results obtained of the
fabrication and characterization of an optical fibers sensor with a thin film doped with two different organics dyes
(Rhodamine 6G and Coumarin), deposited in a little section of the optical fiber by the SOL - GEL process. It was
found that each dye is sensitive to different pH ranges (2 to 12). The fiber optics sensor can be used for the measured of
the pH level of aqueous testing solution, and the combination of the dyes is possible to cover a dynamic ranges from 2
to 12. It is also analyzed the sensitivity of the sensor with the Rhodamine 6G and Coumarin dye for different molar
concentrations in a range 0.01% to 0.08% and to determine this way the best concentration for the sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.