Hyperspectral imaging (HSI) and radiomics have the potential to improve the accuracy of tumor malignancy prediction and assessment. In this work, we extracted radiomic features of fresh surgical papillary thyroid carcinoma (PTC) specimen that were imaged with HSI. A total of 107 unique radiomic features were extracted. This study includes 72 ex-vivo tissue specimens from 44 patients with pathology-confirmed PTC. With the dilated hyperspectral images, the shape feature of least axis length was able to predict the tumor aggressiveness with a high accuracy. The HSI-based radiomic method may provide a useful tool to aid oncologists in determining tumors with intermediate to high risk and in clinical decision making.
Computed tomography (CT) is commonly used for the characterization and tracking of abdominal muscle mass in surgical patients for both pre-surgical outcome predictions and post-surgical monitoring of response to therapy. In order to accurately track changes of abdominal muscle mass, radiologists must manually segment CT slices of patients, a time-consuming task with potential for variability. In this work, we combined a fully convolutional neural network (CNN) with high levels of preprocessing to improve segmentation quality. We utilized a CNN based approach to remove patients’ arms and fat from each slice and then applied a series of registrations with a diverse set of abdominal muscle segmentations to identify a best fit mask. Using this best fit mask, we were able to remove many parts of the abdominal cavity, such as the liver, kidneys, and intestines. This preprocessing was able to achieve a mean Dice similarity coefficient (DSC) of 0.53 on our validation set and 0.50 on our test set by only using traditional computer vision techniques and no artificial intelligence. The preprocessed images were then fed into a similar CNN previously presented in a hybrid computer vision-artificial intelligence approach and was able to achieve a mean DSC of 0.94 on testing data. The preprocessing and deep learning-based method is able to accurately segment and quantify abdominal muscle mass on CT images.
In women with placenta accreta spectrum (PAS), patient management may involve cesarean hysterectomy at delivery. Magnetic resonance imaging (MRI) has been used for further evaluation of PAS and surgical planning. This work tackles two prediction problems: predicting presence of PAS and predicting hysterectomy using MR images of pregnant patients. First, we extracted approximately 2,500 radiomic features from MR images with two regions of interest: the placenta and the uterus. In addition to analyzing two regions of interest, we dilated the placenta and uterus masks by 5, 10, 15, and 20 mm to gain insights from the myometrium, where the uterus and placenta overlap in the case of PAS. This study cohort includes 241 pregnant women. Of these women, 89 underwent hysterectomy while 152 did not; 141 with suspected PAS, and 100 without suspected PAS. We obtained an accuracy of 0.88 for predicting hysterectomy and an accuracy of 0.92 for classifying suspected PAS. The radiomic analysis tool is further validated, it can be useful for aiding clinicians in decision making on the care of pregnant women.
In severe cases, placenta accreta spectrum (PAS) requires emergency hysterectomy, endangering the life of both mother and fetus. Early prediction may reduce complications and aid in management decisions in these high-risk pregnancies. In this work, we developed a novel convolutional network architecture to combine MRI volumes, radiomic features, and custom feature maps to predict PAS severe enough to result in hysterectomy after fetal delivery in pregnant women. We trained, optimized, and evaluated the networks using data from 241 patients, in groups of 157, 24, and 60 for training, validation, and testing, respectively. We found the network using all three paths produced the best performance, with an AUC of 87.8, accuracy 83.3%,sensitivity of 85.0, and specificity of 82.5. This deep learning algorithm, deployed in clinical settings, may identify women at risk before birth, resulting in improved patient outcomes.
Papillary thyroid carcinoma (PTC) is primarily treated by surgical resection. During surgery, surgeons often need intraoperative frozen analysis and pathologic consultation in order to detect PTC. In some cases pathologists cannot determine if the tumor is aggressive until the operation has been completed. In this work, we have taken tumor classification a step further by determining the tumor aggressiveness of fresh surgical specimens. We employed hyperspectral imaging (HSI) in combination with multiparametric radiomic features to complete this task. The study cohort includes 72 ex-vivo tissue specimens from 44 patients with pathology-confirmed PTC. A total of 67 features were extracted from this data. Using machine learning classification methods, we were able to achieve an AUC of 0.85. Our study shows that hyperspectral imaging and multiparametric radiomic features could aid in the pathological detection of tumor aggressiveness using fresh surgical spemens obtained during surgery.
CT is widely used for diagnosis and treatment of a variety of diseases, including characterization of muscle loss. In many cases, changes in muscle mass, particularly abdominal muscle, indicate how well a patient is responding to treatment. Therefore, physicians use CT to monitor changes in muscle mass throughout the patient’s course of treatment. In order to measure the muscle, radiologists must segment and review each CT slice manually, which is a time-consuming task. In this work, we present a fully convolutional neural network (CNN) for the segmentation of abdominal muscle on CT. We achieved a mean Dice similarity coefficient of 0.92, a mean precision of 0.93, and a mean recall of 0.91 in an independent test set. The CNN-based segmentation method can provide an automatic tool for the segmentation of abdominal muscle. As a result, the time required to obtain information about changes in abdominal muscle using the CNN takes a fraction of the time associated with manual segmentation methods and thus can provide a useful tool in the clinical application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.