Aiming at the need of video abnormal events to be located in pixel-level regions, a video abnormal event detection method based on CNN (Convolutional Neural Networks) and multiple instance learning is proposed. Firstly, the Gaussian background model is used to extract the moving targets in the video, and the connected regions of the moving targets are obtained by the image processing method. Secondly, the pre-trained VGG16 model is used to extract the features of the connected regions what construct multiple instance learning packages. Finally, the multiple instance learning model is trained using MISVM (Multiple-Instance Support Vector Machines) and NSK (Normalized Set Kernel) algorithms and predicted at the pixel-level. The experimental results show that the video anomaly detection method based on CNN and multiple instance learning can accurately locate the abnormal events in the pixel-level region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.