Bacterial pathogen contamination is the leading cause of both foodborne and hospital-acquired diseases. Therefore, there is a constant need for more effective, reliable and easy-to-use microbiology study techniques and detection systems. This is critical, as pathogenic contamination has become a central issue in the food industry and healthcare. This paper describes the novel use of resolution-optimized prism-based surface plasmon resonance imaging (resolution around the size of a bacteria) and data processing to further understand the behavior of individual bacteria near specifically engineered surfaces. We show that our technique is effective for both the dynamic study of individual bacteria behavior near interface on a statistically representative sample, and their interactions with chemically functionalized surfaces.
This work presents the proof of concept of the detection of global and surface optical index variations by surface plasmon resonance (SPR) thanks to optical fiber bundles. This work is the first necessary step for the future design of a lab-on-fiber tool dedicated to molecular analysis for endoscopic diagnosis. Our approach is based on nanostructured optical fiber bundles comprising several thousands of individual optical fibers. These nanostructures were coated by a thin gold layer in order to gain interesting optical properties such like SPR. The sensitivity and resolution of the bundle to global optical index changes were measured in retro-reflection. We performed numerical simulations in order to optimize the fiber tip geometry, gold coating thickness and finally enhance their analytical performances. We achieved a resolution of 10-4 refractive index unit, which is fully compatible with the detection of biological interactions involving large proteins or bacteria. Finally, we proved that our sensor was sensitive to surface optical index variations and able to detect the adsorption of a thin self-assembled molecular layer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.