A strategy for the detection of H2O2 as a milk adulterant using a single shot membrane sensor, is presented. Direct quantitative evaluation of H2O2 in raw, skimmed, semi-skimmed and whole milk was carried out based on a chemiluminescence reaction with luminol. For H2O2 water solutions a linear response was attained from 0.0001% to 0.007 %w/w, with a limit of detection of 3×10-5 %w/w. A coefficient of determination, R2 , greater than 0.97 was achieved, with a relative standard deviation (RSD) not exceeding 10%. In the analyzed milk samples, the lowest H2O2 concentration detected was 0.001%w/w for raw and for skim milk and 0.002%w/w for, semi-skimmed and whole milk. The presented method is original, sensitive, rapid, and cost-effective. Due to the achieved sensitivity the method has great potential to be used for H2O2 detection in diverse areas, such as environmental monitoring and food quality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.