The growing use of superparamagnetic iron oxide nanoparticles (SPIONs) in early cancer detection technologies has created a demand for physiologically-based pharmacokinetic (PBPK) models that accurately model and predict the biodistribution of SPIONs in the mouse and human model. The objective of this work is to use a Bayesian approach built upon nested-sampling to select a model based on qualitative criteria of the fit of the model and the likelihood function landscape, as well as quantitative criteria of the evidence and maximum likelihood values. Four first-order PBPK compartmental models of ranging complexity are considered. Compartments included in the models comprise of a combination of the plasma, liver, spleen, tumor, and “other” (the remaining body tissue), with parameters including the volume, blood flow rate, and plasma:tissue distribution ratios. The model parameters for each model are evaluated using Bayesian inference, in addition to the respective evidence integrals, maximum log-likelihoods, and Bayes factors. The model containing all compartments and the model containing the plasma, liver, tumor and “other” had the highest log-likelihood and evidence values, indicating both a high goodness-of-fit and a high likelihood of the model given the data. This is similarly reflected in a faithful quality-of-fit and non-flat log-likelihood landscapes. Overall, these findings illustrate the strength of the Bayesian model selection framework in ranking different models to determine the best model that accurately represents the experimental data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.