This will count as one of your downloads.
You will have access to both the presentation and article (if available).
To make the maximal use of astrophotonic integration such as coupling the AWGs with multiple single-mode fibers coming from photonic lanterns or fiber Bragg gratings (FBGs), we require a multi-input AWG design. In a multi-input AWG, the output spectrum due to each individual input channel overlaps to produce a combined spectrum from all inputs. This on-chip combination of light effectively improves the signal-to-noise ratio as compared to spreading the photons to several AWGs with single inputs. In this paper, we present the design and simulation results of an AWG in the H band with three input waveguides (channels). The resolving power of individual input channels is ~1500, while the overall resolving power with three inputs together is ~500, 600, 750 in three different configurations simulated here. The device footprint is only 16 mm x 7 mm. The free spectral range of the device is ~9.5 nm around a central wavelength of 1600 nm. For the standard multi-input AWG, the relative shift between the output spectra due to adjacent input channels is about 1.6 nm, which roughly equals one spectral channel spacing. In this paper, we discuss ways to increase the resolving power and the number of inputs without compromising the free spectral range or throughput.
View contact details
No SPIE Account? Create one