Segmentation of breast masses in mammograms is a challenging issue due to the nature of mammography and the characteristics of masses. In fact, mammographic images are poor in contrast and breast masses have various shapes and densities with fuzzy and ill-defined borders. In this paper, we propose a method based on a modified Chan-Vese active contour model for mass segmentation in mammograms. We conduct the experiment on mass Regions of Interest (ROI) extracted from the MIAS database. The proposed method consists of mainly three stages: Firstly, the ROI is preprocessed to enhance the contrast. Next, two fuzzy membership maps are generated from the preprocessed ROI based on fuzzy C-Means algorithm. These fuzzy membership maps are finally used to modify the energy of the Chan-Vese model and to perform the final segmentation. Experimental results indicate that the proposed method yields good mass segmentation results.
Shape and margin features are very important for differentiating between benign and malignant masses in mammographic images. In fact, benign masses are usually round and oval and have smooth contours. However, malignant tumors have generally irregular shape and appear lobulated or speculated in margins. This knowledge suffers from imprecision and ambiguity. Therefore, this paper deals with the problem of mass classification by using shape and margin features while taking into account the uncertainty linked to the degree of truth of the available information and the imprecision related to its content. Thus, in this work, we proposed a novel mass classification approach which provides a possibility based representation of the extracted shape features and builds a possibility knowledge basis in order to evaluate the possibility degree of malignancy and benignity for each mass. For experimentation, the MIAS database was used and the classification results show the great performance of our approach in spite of using simple features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.