Using complementary optical microscopy techniques provides more detailed insight into biological samples. However, misinterpretation can occur by temporal discrepancies due to differences in temporal resolution and switching imaging modalities. Here, we demonstrated multimodal imaging of cryofixed cells using Raman and fluorescence structured illumination microscopy (SIM). Cryofixation preserves structures and chemical states of samples in their near-native states, allowing multimodal imaging without artifacts caused by temporal discrepancy. We demonstrated multimodal imaging of cryofixed HeLa cells stained with an actin probe, where Raman microscope visualized cytochromes, proteins and lipids, and SIM visualized fluorescence-labelled actin filaments.
We investigated the photophysical property of Yellow Cameleon 3.60 (YC3.60), a fluorescent calcium-ion (Ca2+) indicator based on Förster resonance energy transfer (FRET), under cryogenic conditions. By measuring the fluorescence intensity ratio of the donor and accepter at various Ca2+ concentrations under room and cryogenic temperatures, we confirmed that YC3.60 exhibits a Ca2+-dependent FRET efficiency. Although slight differences were observed in the fluorescence lifetime and spectral shape at the cryogenic temperature, which can affect the FRET efficiency, our measurement suggested that YC3.60 can be employed for quantitative Ca2+ measurement and imaging under cryogenic conditions with improved photostability and quantum yield.
Raman microscopy enables us to obtain molecular information in biological samples but has suffered from low signal-to-noise ratio (SNR) due to low of Raman scattering cross-section. Here we developed a cryo-stat equipped Raman microscope for low temperature measurement, allowing long time accumulation of Raman signals. We confirmed the SNR improvement in Raman imaging of cryofixed HeLa cells without photodamage under long time observation at low temperature. The reduction of photobleaching in resonant Raman scattering of carotenoid and cytochrome significantly increases the SNR, demonstrated by 7-color high SNR Raman imaging with multiple Raman tags, including EdU, MitoBADY, and alkyne-tagged Coenzyme Q (AltQ2). AltQ2 is a mobile small molecule that cannot be fixed by chemical fixation.
Raman microscopy provides a variety of insights into molecular composition, chemical state, and environmental conditions in biological samples. However, biological imaging with Raman microscopy have faced challenges such a low signal-to-noise ratio, mainly due to the low scattering efficiency of Raman scattering. To overcome this limitation, we developed a cryo-Raman microscope integrated with a cryostat capable of rapid freezing of biological samples and low-temperature Raman imaging. The spatiotemporal cryofixation of biological samples allows long exposure measurements to accumulate signals without photodamage. We observed both reduction of photobleaching in resonant Raman scattering of cytochromes in cryofixed HeLa cells, and the preservation of redox states of cytochromes in rat heart tissue by cryofixation.
Optical coherence tomography (OCT) is a non-invasive cross-sectional imaging technique with micrometer resolution.
We have been investigating ultrahigh-resolution (UHR)-OCT using supercontinuum. The characteristics of OCT imaging
depend on the optical wavelength used. In order to investigate the wavelength dependence of UHR-OCT, the wideband,
high-power, low-noise supercontinua were generated at wavelengths of 0.8, 1.1, 1.3, and 1.7 um based on ultrashort
pulses and nonlinear fibers. The wavelength dependence of OCT imaging was examined quantitatively using biological
phantoms and rat lung tissue. Then we developed UHR-OCT and optical coherence microscopy (OCM) at 1.7 um, which
is called as “Optical Window III”. The high-resolution and high-penetration imaging of mouse brain was demonstrated.
Optical coherence tomography (OCT) is a non-invasive cross-sectional imaging technique with micrometer resolution. We have been investigating ultrahigh-resolution (UHR)-OCT using supercontinuum. The characteristics of OCT imaging depend on the optical wavelength used. In order to investigate the wavelength dependence of UHR-OCT, the wideband, high-power, low-noise supercontinua were generated at wavelengths of 0.8, 1.1, 1.3, and 1.7 um based on ultrashort pulses and nonlinear fibers. The wavelength dependence of OCT imaging was examined quantitatively using biological phantoms and rat lung tissue. Then we developed UHR-spectral domain-OCT and optical coherence microscopy (OCM) at 1.7 um. The high-resolution and high-penetration imaging of mouse brain was demonstrated.
Optical coherence tomography (OCT) is a non-invasive cross-sectional imaging technique with micrometer resolution. OCT is useful, non-invasive imaging technique of the internal structure, and it has been applied in many fields, especially medicine and industry. The theoretical axial resolution is determined by the center wavelength and bandwidth of the light source, and the wider the bandwidth is, the higher the axial resolution is. Supercontinuum is the high-power, ultrawideband light source. We have been investigating ultrahigh-resolution (UHR)-OCT using supercontinuum. The characteristics of OCT imaging depend on the optical wavelength used. In this talk, we report our recent work of the wavelength dependence of UHR-OCT using a supercontinuum for biomedical imaging. In order to investigate the wavelength dependence of UHR-OCT, the wideband, high-power, low-noise supercontinua were generated at wavelengths of 0.8, 1.1, 1.3, and 1.7 um based on ultrashort pulses and nonlinear fibers. The wavelength dependence of OCT imaging was examined quantitatively using biological phantoms. Ultrahigh-resolution imaging of a rat lung was demonstrated with wavelengths of 0.8 – 1.0 um UHR-OCT. The variation of alveolar volume was estimated using 3D image analysis. We also developed UHR-spectral domain-OCT and optical coherence microscopy (OCM) at 1.7 um. The high-resolution and high-penetration imaging of turbid tissue, especially mouse brain, was demonstrated. The wavelength dependence of OCM was also discussed in terms of mouse brain imaging.
KEYWORDS: Microscopy, Luminescence, Spatial resolution, 3D image processing, Confocal microscopy, Two photon excitation microscopy, Stereoscopy, Point spread functions, Objectives, Time lapse microscopy
Two-photon excitation microscopy is one of the key techniques used to observe three-dimensional (3-D) structures in biological samples. We utilized a visible-wavelength laser beam for two-photon excitation in a multifocus confocal scanning system to improve the spatial resolution and image contrast in 3-D live-cell imaging. Experimental and numerical analyses revealed that the axial resolution has improved for a wide range of pinhole sizes used for confocal detection. We observed the 3-D movements of the Golgi bodies in living HeLa cells with an imaging speed of 2 s per volume. We also confirmed that the time-lapse observation up to 8 min did not cause significant cell damage in two-photon excitation experiments using wavelengths in the visible light range. These results demonstrate that multifocus, two-photon excitation microscopy with the use of a visible wavelength can constitute a simple technique for 3-D visualization of living cells with high spatial resolution and image contrast.
We present three-dimensional (3-D) high-resolution spectral-domain optical coherence microscopy (SD-OCM) by using a supercontinuum (SC) fiber laser source with 300-nm spectral bandwidth (full-width at half-maximum) in the 1700-nm spectral band. By using low-coherence interferometry with SC light and a confocal detection scheme, we realized lateral and axial resolutions of 3.4 and 3.8 μm in tissue (n = 1.38), respectively. This is, to the best of our knowledge, the highest 3-D spatial resolution reported among those of Fourier-domain optical coherence imaging techniques in the 1700-nm spectral band. In our SD-OCM, to enhance the imaging depth, a full-range method was implemented, which suppressed the formation of a coherent ghost image and allowed us to set the zero-delay position inside the samples. We demonstrated the 3-D high-resolution imaging capability of 1700-nm SD-OCM through the measurement of an interference signal from a mirror surface and imaging of a single 200-nm polystyrene bead and a pig thyroid gland. Deep tissue imaging at a depth of up to 1.8 mm was also demonstrated. This is the first demonstration of 3-D high-resolution SD-OCM in the 1700-nm spectral band.
Rare-earth-doped nanoparticles are one of the emerging probes for bioimaging due to their visible-to-near-infrared (NIR) upconversion emission via sequential single-photon absorption at NIR wavelengths. The NIR-excited upconversion property and high photostability make this probe appealing for deep tissue imaging. So far, upconversion nanoparticles include ytterbium ions (Yb3 + ) codoped with other rare earth ions, such as erbium (Er3 + ) and thulium (Tm3 + ). In these types of upconversion nanoparticles, through energy transfer from Yb3 + excited with continuous wave light at a wavelength of 980 nm, upconversion emission of the other rare earth dopants is induced. We have found that the use of the excitation of Er3 + in the 1550-nm wavelength region allows us to perform deep tissue imaging with reduced degradation of spatial resolution. In this excitation–emission process, three and four photons of 1550-nm light are sequentially absorbed, and Er3 + emits photons in the 550- and 660-nm wavelength regions. We demonstrate that, compared with the case using 980-nm wavelength excitation, the use of 1550-nm light enables us to moderate degradation of spatial resolution in deep tissue imaging due to the lower light scattering coefficient compared with 980-nm light. We also demonstrate that live cell imaging is feasible with this 1550 nm excitation.
We investigated the axial resolution and signal-to-noise ratio (SNR) characteristics in deep-tissue imaging by 1.7-μm optical coherence tomography (OCT) with the axial resolution of 4.3 μm in tissue. Because 1.7-μm OCT requires a light source with a spectral width of more than 300 nm full-width at half maximum to achieve such high resolution, the axial resolution in the tissue might be degraded by spectral distortion and chromatic dispersion mismatching between the sample and reference arms. In addition, degradation of the axial resolution would also lead to reduced SNR. Here, we quantitatively evaluated the degradation of the axial resolution and the resulting decrease in SNR by measuring interference signals through a lipid mixture serving as a turbid tissue phantom with large scattering and absorption coefficients. Although the axial resolution was reduced by a factor of ∼6 after passing through a 2-mm-thick tissue phantom, our result clearly showed that compensation of the dispersion mismatching allowed us to achieve an axial resolution of 4.3 μm in tissue and improve the SNR by ∼5 dB compared with the case where dispersion mismatching was not compensated. This improvement was also confirmed in the observation of a hamster’s cheek pouch in a buffer solution.
We developed full-range, ultrahigh-resolution (UHR) spectral-domain optical coherence tomography (SD-OCT) in 1.7 um wavelength region for high-resolution and deep-penetration OCT imaging of turbid tissues. To realize an ultrahigh axial resolution, the ultra-broadband supercontinuum source at 1.7 um wavelength with a spectral width of 0.4 um at FWHM and home-built spectrometer with a detection range from 1.4 to 2.0 um were employed. Consequently, we achieved the axial resolution of 3.6 um in tissue (a refractive index n = 1.38). To observe deep regions of turbid tissues while keeping the ultrahigh axial resolution, a full-range OCT method to eliminate a coherent ghost image was utilized for our UHR-SD-OCT. Because the full-range method allows us to avoid the formation of a coherent ghost image when the zero delay position is in the inside of specimens, we set the zero delay position to the laser focus position in this study, and then, a region of interest in specimens was moved to the laser focus position where the highest signal intensity is achieved, resulting in the improvement of the observation depth. Thanks to the deep-penetration property of the 1.7 um light and elimination of a ghost image, we successfully demonstrated the visualization of the mouse brain structures at a depth over 1.5 mm from the surface with the 1.7 um UHR-SD-OCT. In this experiment, we confirmed that the brain specific structures, such as corpus callosum, pyramidal cell layer, and hippocampus, were clearly observed.
Optical coherence microscopy (OCM) is a high-resolution imaging technique based on optical coherence tomography and confocal microscopy. The recent studies on OCM operating at 800-1300 nm spectral region have shown that OCM enables to visualize micrometer- or sub-micrometer-scale structures of animal tissues. Although OCMs offers such high-resolution label-free imaging capability of animal tissues, the imaging depth was restricted by multiple light scattering and light absorption of water in samples. Here, for high-resolution deep-tissue imaging, we developed an OCM in the 1700-nm spectral band by using a supercontinuum (SC) source with a Gaussian-like spectral shape in the wavelength region. Recently, it has been reported that the 1700-nm spectral band is a promising choice for enhancing the imaging depth in the observation of turbid scattering tissues because of the low attenuation coefficient of light. In this study, to clarify that the 1700-nm OCM has a potential to realize the enhanced imaging depth, we compared the attenuation of the signal-to-noise ratio between the 1700-nm and 1300-nm OCM imaging of a mouse brain under the same signal detection sensitivity condition. The result shows that the 1700-nm OCM enables us to achieve the enhanced imaging depth. In this 1700-nm OCM, we also confirmed that the lateral resolution of 1.3 µm and axial resolution of 2.8 µm in tissue were achieved.
Two-photon excitation microscopy (TPEM) provides spatial resolution beyond the optical diffraction limit using the nonlinear response of fluorescent molecules. One of the strong advantages of TPEM is that it can be performed using a laser-scanning microscope without a complicated excitation method or computational post-processing. However, TPEM has not been recognized as a super-resolution microscopy due to the use of near-infrared light as excitation source, which provides lower resolution than visible light. In our research, we aimed for the realization of nonlinear fluorescence response with visible light excitation to perform super-resolution imaging using a laser-scanning microscope. The nonlinear fluorescence response with visible light excitation is achieved by developing a probe which provides stepwise two-photon excitation through photoinduced charge separation. The probe named nitro-bisBODIPY consists of two fluorescent molecules (electron donor: D) and one electron acceptor (A), resulting to the structure of D-A-D. Excited by an incident photon, nitro-bisBODIPY generates a charge-separated pair between one of the fluorescent molecules and the acceptor. Fluorescence emission is obtained only when one more incident photon is used to excite the other fluorescent molecule of the probe in the charge-separated state. This stepwise two-photon excitation by nitro-bisBODIPY was confirmed by detection of the 2nd order nonlinear fluorescence response using a confocal microscope with 488 nm CW excitation. The physical model of the stepwise two-photon excitation was investigated by building the energy diagram of nitro-bisBODIPY. Finally, we obtained the improvement of spatial resolution in fluorescence imaging of HeLa cells using nitro-bisBODIPY.
The simultaneous observation of multiple fluorescent proteins (FPs) by optical microscopy is revealing mechanisms by which proteins and organelles control a variety of cellular functions. Here we show the use of visible-light based two-photon excitation for simultaneously imaging multiple FPs. We demonstrated that multiple fluorescent targets can be concurrently excited by the absorption of two photons from the visible wavelength range and can be applied in multicolor fluorescence imaging. The technique also allows simultaneous single-photon excitation to offer simultaneous excitation of FPs across the entire range of visible wavelengths from a single excitation source. The calculation of point spread functions shows that the visible-wavelength two-photon excitation provides the fundamental improvement of spatial resolution compared to conventional confocal microscopy.
Recently, we discovered, for the first time, reverse saturable scattering in a single gold nanoparticle. When incident intensity increases, the scattering intensity dependence of 80-nm gold nanoparticles evolves from linear, to saturation, and to reverse saturation sequentially. The intensity dependence in reverse saturable scattering region is significantly steeper than that in the linear region. With the aid of a confocal microscope, the full width half maximum of the single-particle point spread function can be reduced down to 80 nm, which is beyond the diffraction limit. Our finding shows great potential for superresolution imaging application without bleaching.
The wavelength and size dependencies of nonlinear scattering by a single gold nanosphere immersed in oil are presented. We show that the wavelength dependency fits well with the scattering spectrum by Mie solution, reflecting that the nonlinear scattering is dominated by the field enhancement from plasmonic effects. The tendency for different sizes is consistent with the results of degenerate four-wave mixing in the literature, showing that the saturation behavior is governed by the Kerr nonlinearity resonantly enhanced via intraband transition. Thus we conclude that the saturable scattering in our case is attributed to intraband χ(3), with nonlinear behavior enhanced by LSPR.
KEYWORDS: Microscopy, Confocal microscopy, Luminescence, Spatial resolution, Signal detection, 3D image processing, Point spread functions, Glasses, Optical transfer functions, Demodulation
Saturated excitation (SAX) microscopy offers high-depth discrimination predominantly due to nonlinearity in the fluorescence response induced by the SAX. Calculation of the optical transfer functions and the edge responses for SAX microscopy revealed the contrast improvement of high-spatial frequency components in the sample structure and the effective reduction of background signals from the out-of-focus planes. Experimental observations of the edge response and x-z cross-sectional images of stained HeLa cells agreed well with theoretical investigations. We applied SAX microscopy to the imaging of three-dimensional cultured cell clusters and confirmed the resolution improvement at a depth of 40 μm. This study shows the potential of SAX microscopy for super-resolution imaging of deep parts of biological specimens.
Conventionally, super-resolution imaging is achieved by manipulating the on/off switching of fluorophores, or by saturation of fluorescence emission. To prevent the photobleaching of fluorophores, we demonstrate novel superresolution imaging based on saturation of scattering from plasmonic particles, for the first time. With spectral studies, we have confirmed the saturation is directly linked to surface plasmon resonance effect. With the aid of saturation excitation microscopy, plus field concentration due to nonlinear plasmon resonance, we have achieved optical resolution below 80-nm based on scattering. Our study will open up a completely new paradigm for super-resolution microscopy.
In this work, we investigated, both theoretically and experimentally, the saturable scattering in a single gold
nanoparticle for the first time. In theoretical part, we used different models of the nonlinear properties to explain the
nonlinear responses in gold material. In experimental part, multi-color confocal microscopy was used to observe the
scattering of a single gold nanoparticle. As a result, by a resonant excitation, saturable scattering was observed with
moderate excitation intensity (~107 W/cm2); with even higher excitation intensity (>109 W/cm2), reverse saturable scattering was observed, indicating the existence of higher order nonlinear properties. To completely comprehend the
mechanism of this saturable scattering, we applied three kinds of excitation wavelengths (405nm, 532nm and 671nm) and
four kinds of gold nanoparticle with different diameters (40nm, 50nm, 80nm and 100nm) to demonstrate the wavelength
dependence and size dependence. Since the scattering of gold nanoparticles is significantly enhanced by localized surface
plasmon resonance, we compared these dependencies with the spectral properties induced by LSPR and found that they
match the spectra, revealing that the saturation is dominated by plasmon resonance. Besides, by fitting the dependencies,
linear and nonlinear hyperpolarizability of a single gold nanoparticle were also deduced.
We used nonlinear fluorescence emission under the condition of saturated excitation (SAX) of fluorescent
molecules for high-resolution laser scanning microscopy. In the technique, SAX microscopy, we
modulate the excitation intensity at a single frequency and demodulate the fluorescence signal at a
harmonic frequency to extract a nonlinear fluorescence response that contributes to improvement of the
spatial resolution. This nonlinear fluorescent response on saturated condition was analyzed by rate
equations formulated from a five-level system Jablonski diagram. By calculating relationship between
excitation intensity and fluorescence signal demodulated at harmonic frequencies for rhodamine-6G
molecules with 532 nm excitaion, we found that the fluorescent signal exhibits high-order nonlinear
dependence on the excitation intensity under conditions of saturated excitation. We also calculated
effective point spread functions (ePSFs) of SAX microscopy. The result of the calculation shows that
ePSFs given with the harmonic demodulation provides the spatial resolution beyond the resolution limit
of conventional confocal microscopy. The optical transfer functions have also been calculated from the
ePSFs. The result of the calculation shows that a higher spatial-resolution can be obtained by
demodulating fluorescnece signal at a higher harmonic frequency without theoretical limitation.
We present an alternative high-resolution fluorescence imaging technique, saturated excitation (SAX) microscopy, for
observations of biological samples. In the technique, we saturate the population of fluorescence molecules at the excited
state with high excitation intensity. Under this condition, the fluorescence intensity is no longer proportional to the
excitation intensity and the relation of the fluorescence and excitation intensity shows strong nonlinearity. In the centre of
laser focus, the nonlinear responses induced by the saturation appear notably because of higher excitation intensity. By
detecting fluorescence signals from the saturated area, we can push the spatial resolution beyond the diffraction barrier in
three dimensions. SAX microscopy can be realized with a simple optics, where a laser intensity modulation sisytem and a
lock-in amplifier are simply added to a conventional confocal microscope system. Using the SAX microscope, we
demonstrated high-resolution imaging of a biological sample by observing mitochondria in HeLa cells. We also examined
the nonlinear response of commercially available dyes under saturated excitation conditions.
We demonstrate high-resolution fluorescence imaging in biological samples by saturated excitation (SAX) microscopy. In this technique, we saturate the population of fluorescence molecules at the excited state with high excitation intensity to induce strong nonlinear fluorescence responses in the center of laser focus, which contributes the improvement of the spatial resolution in three dimensions. Using SAX microscopy, we observed stained microtubules in HeLa cells with improved spatial resolution. We also measured the relation of the fluorescence and excitation intensity with several kinds of fluorescence dyes and, in the results, confirmed that SAX microscopy has the potential to observe any kind of fluorescence samples in current usage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.