N. Loh, Dmitri Starodub, Lukas Lomb, Christina Hampton, Andrew Martin, Raymond Sierra, Anton Barty, Andrew Aquila, Joachim Schulz, Jan Steinbrener, Robert Shoeman, Stephan Kassemeyer, Christoph Bostedt, John Bozek, Sascha Epp, Benjamin Erk, Robert Hartmann, Daniel Rolles, Artem Rudenko, Benedikt Rudek, Lutz Foucar, Nils Kimmel, Georg Weidenspointner, Günther Hauser, Peter Holl, Emanuele Pedersoli, MengNing Liang, Mark Hunter, Lars Gumprecht, Nicola Coppola, Cornelia Wunderer, Heinz Graafsman, Filipe R. N. Maia, Tomas Ekeberg, Max Hantke, Holger Fleckenstein, Helmut Hirsemann, Karol Nass, Thomas White, Herbert Tobias, George Farquar, W. Henry Benner, Stefan Hau-Riege, Christian Reich, Andreas Hartmann, Heike Soltau, Stefano Marchesini, Sasa Bajt, Miriam Barthelmess, Lothar Strueder, Joachim Ullrich, Philip Bucksbaum, Keith Hodgson, Mathias Frank, Ilme Schlichting, Henry Chapman, Michael Bogan
Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.
Andrew Martin, Jakob Andreasson, Andrew Aquila, Saša Bajt, Thomas R. Barends, Miriam Barthelmess, Anton Barty, W. Henry Benner, Christoph Bostedt, John Bozek, Phillip Bucksbaum, Carl Caleman, Nicola Coppola, Daniel DePonte, Tomas Ekeberg, Sascha Epp, Benjamin Erk, George Farquar, Holger Fleckenstein, Lutz Foucar, Matthias Frank, Lars Gumprecht, Christina Hampton, Max Hantke, Andreas Hartmann, Elisabeth Hartmann, Robert Hartmann, Stephan Hau-Riege, Günther Hauser, Peter Holl, André Hoemke, Olof Jönsson, Stephan Kassemeyer, Nils Kimmel, Maya Kiskinova, Faton Krasniqi, Jacek Krzywinski, Mengning Liang, Ne-Te Duane Loh, Lukas Lomb, Filipe R. N. Maia, Stefano Marchesini, Marc Messerschmidt, Karol Nass, Duško Odic, Emanuele Pedersoli, Christian Reich, Daniel Rolles, Benedikt Rudek, Artem Rudenko, Carlo Schmidt, Joachim Schultz, M. Marvin Seibert, Robert Shoeman, Raymond Sierra, Heike Soltau, Dmitri Starodub, Jan Steinbrener, Francesco Stellato, Lothar Strüder, Martin Svenda, Herbert Tobias, Joachim Ullrich, Georg Weidenspointner, Daniel Westphal, Thomas White, Garth Williams, Janos Hajdu, Ilme Schlichting, Michael Bogan, Henry Chapman
Results of coherent diffractive imaging experiments performed with soft X-rays (1-2 keV) at the Linac Coherent
Light Source are presented. Both organic and inorganic nano-sized objects were injected into the XFEL beam
as an aerosol focused with an aerodynamic lens. The high intensity and femtosecond duration of X-ray pulses
produced by the Linac Coherent Light Source allow structural information to be recorded by X-ray diffraction
before the particle is destroyed. Images were formed by using iterative methods to phase single shot diffraction
patterns. Strategies for improving the reconstruction methods have been developed. This technique opens
up exciting opportunities for biological imaging, allowing structure determination without freezing, staining or
crystallization.
The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.
The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.
We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 X 1 X 0.25 mm3 Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of this detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb and Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.
In x-ray and gamma-ray spectroscopy, it is desirable to have detectors with high energy resolution and high absorption efficiency. At LLNL, we have developed superconducting tunnel junction-based single photon x-ray detectors with thin film absorbers that have achieved these goals for photon energies up to 1 keV. However, for energies above 1 keV, the absorption efficiency of these thin-film detectors decreases drastically. We are developing the use of high-purity superconducting bulk materials as microcalorimeter absorbers for high-energy x-rays and gamma rays. The increase in absorber temperature due to incident photons is sensed by a superconducting transition- edge sensor (TES) composed of a Mo/Cu multilayer thin film. Films of Mo and Cu are mutually insoluble and therefore very stable and can be annealed. The multilayer structure allows scaling in thickness to optimize heat capacity and normal state resistance. We measured an energy resolution of 70 eV for 60 keV incident gamma-rays with a 1 X 1 X 0.25 mm3 Sn absorber. We present x-ray and gamma-ray results from this detector design with an Sn absorber. We also propose the use of an active negative feedback voltage bias to improve the performance of our detector and show preliminary results.
COnstellation-X is a cluster of identical observatories that together constitute a promising concept for a next- generation, high-throughput, high-resolution, astrophysical x-ray spectroscopy mission. The heart of the Constellation-X mission concept is a high-quantum-efficiency imaging spectrometer with 2 eV resolution at 6 keV. Collectively across the cluster, this imaging spectrometer will have twenty times the collecting efficiency of XRS on Astro-E and better than 0.25 arc minute imaging resolution. The spectrometer on each satellite will be able to handle count rates of up to 1000 counts per second per imaging pixel for a point source and 30 counts per second per pixel for an extended source filling the array. Focal plane coverage of at least 2.5 arc minutes X arc minutes, comparable to XRS but with a factor of thirty more pixels, is required. This paper will present the technologies that have the potential to meet al these requirements. It will identify the ones chosen for development for Constellation-X and explain why those were considered closer to realization, and it will summarize the results of the development work thus far.
This work presents the first results of our development of normal-insulating-superconducting tunnel junctions used as energy dispersive detectors for low energy particles. The device described here is a Ag/Al2O3/Al tunnel junction of area 1.5 multiplied by 104 micrometer squared with thicknesses of 200 nm for the normal Ag strip and 100 nm for the superconducting Al film. Two different high-speed SQUID systems manufactured by quantum magnetics and HYPRES, respectively, were used for the readout of this device. At 80 mK bath temperature we obtained an energy resolution DeltaEFWHM equals 250 eV for 5.89 keV x rays absorbed directly in the normal metal. This energy resolution appears to be limited in large part by the observed strong position dependence of the device response.
Superconducting tunnel junctions can be used as part of a high-resolution, energy-dispersive x- ray detector. The energy of the absorbed x ray is used to break superconducting electron pairs, producing on the order of 106 excitations, called quasiparticles. The number of quasiparticles produced is proportional to the energy of the absorbed x ray. When a bias voltage is maintained across the barrier, these quasiparticles produce a net tunneling current. Either the peak tunneling current or the total tunneled charge may be measured to determine the energy of the absorbed x ray. The tunneling rate, and therefore the signal, is enhanced by the use of a quasiparticle trap near the tunnel barrier. The trapping efficiency is improved by decreasing the energy gap, though this reduces the maximum temperature at which the device may operate. In our niobium/aluminum configuration, we can very the energy gap in the trapping layer by varying its thickness. This paper examines the performance of two devices with 50 nm aluminum traps at temperatures ranging from 100 mK to 700 mK. We found that this device has a very good energy resolution of about 12 eV FWHM at 1 keV. This energy resolution is independent of temperature for much of this temperature range.
Superconducting tunnel junctions can be used as high resolution x-ray and gamma-ray detectors. Until recently, most results were from detectors that consisted of niobium and aluminum thin films deposited on insulating substrates. Typically Nb films with thicknesses of several hundred nanometers are used as absorbers. These thin film devices inherently suffer from poor quantum efficiency. To increase this efficiency a foil or a single crystal, which can be thicker and can have a larger area than the thin films, can be used as the superconducting absorber. We are working on using ultra-pure, high-Z, superconducting crystals as the x-ray and gamma-ray absorbers. We are planning to fabricate a detector which uses a 10 micrometer-thick Ta crystal as the absorber, which will have a quantum efficiency of greater than 99% at 6 keV. As a test of the different processing steps we fabricated Al/AlOx/Al superconducting tunnel junctions on top of a 30 micrometer thick Al foil. In this paper several of the fabrication issues involved are presented as well as the first results from the Al foil test devices.
Superconducting tunnel junctions have the potential to serve as high-resolution, high-efficiency x-ray detectors for astrophysical and industrial applications. When irradiated by X rays, each X ray excites over 106 charge carriers which cause the detector to generate a pulse of current. We present an analysis of pulse shapes from detectors we have constructed and operated. We fit the decay of the current pulse to a simple model that considers two classes of carrier loss. One model considers only the normal recombination of the charge carriers with themselves, the other included additional losses due to recombination sites within the detector medium. We found that both mechanisms must be taken into account. We also found a small variation in pulse shape depending on which layer of the tunnel junction absorbed the X ray. We expect that this analysis will be a useful tool in comparing different detector designs and operating conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.