Antiferromagnetic thin films attract significant interest for future low-power spintronic devices [1]. Multiferroics, such as bismuth ferrite BiFeO3, in which antiferromagnetism and ferroelectricity coexist at room temperature, appears as a unique platform for spintronic [2] and magnonic devices [3]. The nanoscale structure of its ferroelectric domains has been widely investigated with piezoresponse force microscopy (PFM), revealing unique domain structures and domain wall functionalities [4]. However, the nanoscale magnetic textures present in BiFeO3 and their potential for spin-based technology remain concealed. In this report, we present two different antiferromagnetic spin textures in multiferroic BiFeO3 thin films with different epitaxial strains, using a commercial non-invasive scanning Nitrogen-Vacancy (NV) magnetometer based on a single NV defect in diamond, with a calibrated NV flying height of 60 nm and a proven DC field sensitivity of 1 T/Hz. Two BiFeO3 samples were grown on DyScO3 (110) and SmScO3 (110) substrates (later mentioned as BFO/DSO and BFO/SSO, respectively) using pulsed laser deposition. The striped ferroelectric domains in both samples are first observed by the in-plane PFM. The scanning NV magnetometry (SNVM) confirms the existence of the spin cycloid texture, with zig-zag wiggling angles of 90 and 127, and propagation wavelength of DSO=64 nm andSSO=103 nm, respectively. At the local scale, the combination of PFM and SNVM allows to identify the relative orientation of the ferroelectric polarization and cycloid propagation directions on both sides of a domain wall. For the BFO/DSO sample, the 90-degree in-plane rotation of the ferroelectric polarization imprints the 90-degree in-plane rotation of the cycloidal propagation direction along k1=[-1 1 0], corresponding to the type-I cycloid. On the contrary, in the BFO/SSO sample, the propagation vectors are found to be along k1'=[-2 1 1] and k2'= [1 -2 1] directions in the neighboring domains separated by the 71 domain wall. It is worth to mentioned that in the previous report [5], BFO/SSO, prepared in another growth chamber, showed G-type antiferromagnetic textures, compared to the observed type-II cycloid here. Our results here shed the light on future potential for reconfigurable nanoscale spin textures on multiferroic systems by strain engineering.
Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to
realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single
quantum dot has recently demonstrated an appealing potential. However, the device requires a delicate, sharp needle-like
taper with performance sensitive to minute geometrical details. To overcome this limitation we demonstrate the photonic
trumpet, exploiting an opposite tapering strategy. The trumpet features a strongly Gaussian far-field emission. A first
implementation of this strategy has lead to an ultra-bright single-photon source with a first-lens external efficiency of
0.75 ± 0.1 and a predicted coupling to a Gaussian beam of 0.61 ± 0.08.
Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing potential. However, the device requires a delicate, sharp needle-like taper with performance sensitive to minute geometrical details. To overcome this limitation we demonstrate the photonic trumpet, exploiting an opposite tapering strategy. The trumpet features a strongly Gaussian far-field emission. A first implementation of this strategy has lead to an ultra-bright single-photon source with a first-lens external efficiency of 0.75 ± 0.1 and a predicted coupling to a Gaussian beam of 0.61 ± 0.08.
Photonic wires have recently demonstrated very attractive assets in the field of high-efficiency single photon sources. After presenting the basics of spontaneous emission control in photonic wires, we compare the two possible tapering strategies that can be applied to their output end so as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom mirror and tapered tip display jointly a record-high efficiency (0.75±0.1 photon per pulse) and excellent single photon purity. Beyond single photon sources, photonic wires and trumpets appear as a very attractive resource for solid-state quantum optics experiments.
Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate
quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous
emission of InAs quantum dots (QDs) embedded in single-mode GaAs photonic wires. On the basic side, we have
demonstrated a strong inhibition (x 1/16) of QD SpE in thin wires (d<λ/2n), a nearly perfect coupling of the SpE to the
guided mode (β>0.95 for d~λ/n), and polarization control in elliptical nanowires. A single QD in a photonic wire is thus
an attractive system to explore the physics of the "one-dimensional atom" and build novel quantum optoelectronic
devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for
the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source.
We discuss the generation of THz radiation at room temperature by the exploitation of a nonlinear optical process taking
place in a high quality factor AlGaAs microcavity. The approach is grounded on 1) a novel quasi-phase-matching
scheme for parametric processes involving whispering-gallery modes circulating in nonlinear microcylinders; and 2)
recent advances concerning quantum dots microcylindrical lasers. After a brief summary of the theory used to describe
the nonlinear process, we present the results of our modeling in the case of a passive device pumped by two lasers at
wavelengths close to 1.3 μm. Finally, we conclude with preliminary measurements performed with a tapered fiber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.