We investigate the dynamics of short linear chains consisting of
two-level systems (atoms) coupled by the electromagnetic field. The environment of photon modes acts as a source of noise and leads to the disappearance of the initially present multipartite entanglement. The rate of this process (entanglement degradation) depends on the separation of the atoms, and also on the initial state. By the aid of the appropriate entanglement witnesses we show that this rate is exceptionally low for the so-called subradiant states. Below one resonant wavelength of atomic separation the effect of the environmental noise is weaker than the dipole-dipole interaction and multipartite entanglement can be formed in the initial stage of the time evolution.
Instead of using a frequency dependent refractive index, we propose an alternative method to describe reflection and transmission of femtosecond pulses at the boundary of a new medium. It is a time dependent perturbation treatment of the problem, that follows explicitly the evolution of an ultrashort pulse passing through the boundary. The reflection and transmission properties depend on the relation between the pulse length and the relaxation time of the material.
Conference Committee Involvement (1)
Fluctuations and Noise in Photonics and Quantum Optics II
26 May 2004 | Maspalomas, Gran Canaria Island, Spain
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.