KEYWORDS: Collimators, Cameras, Sensors, 3D image processing, Gamma radiation, Reconstruction algorithms, Monte Carlo methods, Gamma ray imaging, Contamination, Cesium
Assessment of the distribution of radioactive contamination is an essential process for safe decommissioning. Gamma cameras are widely used to investigate the hot spots of radioactive materials. The 3D information of the radioactive contamination is required to reduce the occupational exposure and the radioactive waste. The purpose of this study is to design a multi-pinhole collimator for the 3D gamma ray imaging. The collimator was designed by Monte Carlo simulation and the performance was evaluated by lab test. The collimator consists of four cone-shaped pinholes, tungsten aperture, and lead septa. The acceptance angle and the source to detector distance were 40° and 15 cm, respectively. A number of 2D images were obtained by the linear motion of the gamma camera and the 3D images were reconstructed by filtered back-projection algorithm. As a result, the experimental results were within 2% of the expected values.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.