Estimating building height from satellite imagery is important for digital surface modeling while also providing rich information for change detection and building footprint detection. The acquisition of building height usually requires a LiDAR system, which is not often available in many satellite systems. In this paper, we describe a building height estimation method that does not require building height annotation. Our method estimates building height using building shadows and satellite image metadata given a single RGB satellite image. To reduce the data annotation needed, we design a multi-stage instance detection method for building and shadow detection with both supervised and semi-supervised training. Given the detected building and shadow instances, we can then estimate the building height with satellite image metadata. Building height estimation is done by maximizing the overlap between the projected shadow region given a query height and the detected shadow region. We evaluate our method on the xView2 and Urban Semantic 3D datasets and show that the proposed method achieves accurate building detection, shadow detection, and height estimation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.